화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.43, No.9, 4657-4670, 2018
Evaluation of hydrogen permeation through standalone thermally sprayed coatings of AISI 316L stainless steel
This research evaluates hydrogen permeation and its diffusion characteristics through standalone thermally sprayed coatings of AISI 316L stainless steel. The effects of various charging currents and other parameters on hydrogen diffusion coefficient were scrutinized using electrochemical hydrogen permeation tests. Hydrogen permeation through the thermally sprayed coatings displayed anomalous behavior such that a maximum pinnacle was observed in the permeation curves, attributed to heavily trapped hydrogen atoms in the delayed surface cracks. Therefore, new diffusion parameters were defined for modeling of the anomalous permeation curves. The fitted diffusion parameters were consistently identified, and hence, the model perfectly explained experimental data. The results showed that the increase in charging current caused fast activation and development of surface cracks. The measured diffusion coefficient of hydrogen in the stainless steel thermally sprayed coating was relatively high because the microstructure of the coating contained some ferritic phases and dense dendritic structure, which configure fast diffusion paths. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.