International Journal of Control, Vol.91, No.2, 411-419, 2018
Approximation of optimal filter for Ornstein-Uhlenbeck process with quantised discrete-time observation
Quantisation of signals is a ubiquitous property of digital processing. In many cases, it introduces significant difficulties in state estimation and in consequence control. Popular approaches either do not address properly the problem of system disturbances or lead to biased estimates. Our intention was to find a method for state estimation for stochastic systems with quantised and discrete observation, that is free of the mentioned drawbacks. We have formulated a general form of the optimal filter derived by a solution of Fokker-Planck equation. We then propose the approximation method based on Galerkin projections. We illustrate the approach for the Ornstein-Uhlenbeck process, and derive analytic formulae for the approximated optimal filter, also extending the results for the variant with control. Operation is illustrated with numerical experiments and compared with classical discrete-continuous Kalman filter. Results of comparison are substantially in favour of our approach, with over 20 times lower mean squared error. The proposed filter is especially effective for signal amplitudes comparable to the quantisation thresholds. Additionally, it was observed that for high order of approximation, state estimate is very close to the true process value. The results open the possibilities of further analysis, especially for more complex processes.