Industrial & Engineering Chemistry Research, Vol.57, No.6, 1790-1802, 2018
Colloidal Synthesis of Semiconductor Quantum Dots toward Large Scale Production: A Review
The development of green synthetic approaches is one of the key materials challenges in moving toward semiconductor quantum dots (QDs) for large-scale production and commercial applications. This article presents a comprehensive overview on the synthesis of colloidal QDs prepared via chemical approaches in solution phase, with emphasis on green routes which possess the advantages of environment-friendly raw materials, simple operation process, and robust mass-scale production. The approaches for the synthesis of QDs in batch reactors are summarized, including hot-injection organometallic synthesis, noninjection organometallic synthesis, aqueous synthesis and biosynthesis approaches, with some of the concerns on their limitations for scale-up, followed by some continuous synthetic methods aiming for reproducible and large-scale production. Current advances in continuous synthesis of QDs by microfluidic devices, high-gravity reactors, and spray-based techniques are briefly introduced. We also provide some insights into challenges and opportunities based on our own understanding of this field.