화학공학소재연구정보센터
Enzyme and Microbial Technology, Vol.113, 29-36, 2018
Characterization of regioselective flavonoid O-methyltransferase from the Streptomyces sp KCTC 0041BP
A flavonoid comprises polyphenol compounds with pronounced antiviral, antioxidant, anticarcinogenic, and anti-inflammatory effects. The flavonoid modification by methylation provides a greater stability and improved pharrnacokinetic properties. The methyltransferase from plants or microorganisms is responsible for such substrate modifications in a regiospecific or a promiscuous manner. GerMIII, originally characterized as a putative methyltransferase in a dihydrochalcomycin biosynthetic gene cluster of the Streptomyces sp. KCTC 0041BP, was tested for the methylation of the substrates of diverse chemical structures. Among the various tested substrates, flavonoids emerged as the favored substrates for methylation. Further, among the flavonoids, quercetin is the most favorable substrate, followed by luteolin, myricetin, quercetin 3-O-beta-D-glucoside, and fisetin, while only a single product was formed in each case. The products were confirmed by HPLC and mass-spectrometry analyses. A detailed NMR spectrometric analysis of the methylated quercetin and luteolin derivatives confirmed the regiospecific methylation at the 4'-OH position. Modeling and molecular docking provided further insight regarding the most favorable mechanism and substrate architecture for the enzymatic catalysis. Accordingly, a double bond between the C-2 and the C-3 and a single-ring-appended conjugate-hydroxyl group are crucial for the favorable enzymatic conversions of the GerMIII catalysis. Thus, in this study, the enzymatic properties of GerMill and a mechanistic overview of the regiospecific modification that was implemented for the acceptance of quercetin as the most favorable substrate are presented.