Energy, Vol.147, 286-296, 2018
Two-stage multi-objective OPF for AC/DC grids with VSC-HVDC: Incorporating decisions analysis into optimization process
A two-stage solution approach for solving the problem of multi-objective optimal power flow (MOPF) is proposed for hybrid AC/DC grids with VSC-HVDC. First, a MOPF model for hybrid AC/DC grids is built to coordinate the economy, voltage deviation and environmental benefits. Then, a two-stage solution approach, incorporating decision analysis into optimization process, is presented to solve the model. The first stage of the approach is consisted of a multi-objective particle swarm optimization algorithm with a hybrid coding scheme employed to find multiple Pareto-optimal solutions. The second stage will have the obtained solutions clustered into different groups using fuzzy c-means (FCM) clustering, and then the 'best' compromise solutions are obtained by calculating the priority memberships of the solutions belonging to the same groups via grey relation projection (GRP) method. The novelty of this approach lies primarily in incorporating the FCM-GRP based decisions analysis technique into MOPF studies, thereby assisting decision makers to automatically identify the 'best' operation points. The effectiveness of the proposed approach is verified based on the test results of the IEEE 14- and 300- bus systems. (C)2018 Elsevier Ltd. All rights reserved.
Keywords:AC/DC grids;VSC-HVDC;Multi-objective optimal power flow;Particle swarm optimization;Decision analysis;Grey relation projection