Electrochimica Acta, Vol.259, 440-448, 2018
Polymeric multilayer-modified manganese dioxide with hollow porous structure as sulfur host for lithium sulfur batteries
Lithium sulfur battery is promising as one of the next generation high performance electrochemical systems because of its high energy density and outstanding cost effectiveness. In this work, the hollow structured manganese dioxide modified by polymeric multilayers (PM) is proposed as the sulfur host for lithium sulfur batteries. In the polymeric multilayer-coated S@MnO2 cathode material (S@MnO2@PM), the MnO2 shell shows the capability in trapping the polysulfide intermediates and suppressing the shuttling caused by their dissolution into electrolyte, and the polymeric multilayers improves the Lithorn ion transfer in the composites besides the trapping of polysulfides. The S@MnO2@PM composite exhibits good long-term cyclability due to the synergetic effect of polymeric multilayer and manganese dioxide with hollow porous structure, retaining a discharge capacity of 481 mAh.g(-1) at 0.2 C after 1000 cycles. This demonstration indicates that polymeric multilayers coating on S@MnO2 facilitates the charge transfer and improves the cycling stability of lithium sulfur batteries. (C) 2017 Elsevier Ltd. All rights reserved.
Keywords:Polymeric multilayers;Core-shell structure;Manganese dioxide;Electrochemical performance;Lithium sulfur batteries