- Previous Article
- Next Article
- Table of Contents
Biotechnology and Bioengineering, Vol.115, No.4, 1096-1100, 2018
Production of cellulosic organic acids via synthetic fungal consortia
Consolidated bioprocessing (CBP) is a potential breakthrough technology for reducing costs of biochemical production from lignocellulosic biomass. Production of cellulase enzymes, saccharification of lignocellulose, and conversion of the resulting sugars into a chemical of interest occur simultaneously within a single bioreactor. In this study, synthetic fungal consortia composed of the cellulolytic fungus Trichoderma reesei and the production specialist Rhizopus delemar demonstrated conversion of microcrystalline cellulose (MCC) and alkaline pre-treated corn stover (CS) to fumaric acid in a fully consolidated manner without addition of cellulase enzymes or expensive supplements such as yeast extract. A titer of 6.87 g/L of fumaric acid, representing 0.17 w/w yield, were produced from 40 g/L MCC with a productivity of 31.8 mg/L/hr. In addition, lactic acid was produced from MCC using a fungal consortium with Rhizopus oryzae as the production specialist. These results are proof-of-concept demonstration of engineering synthetic microbial consortia for CBP production of naturally occurring biomolecules.