Applied Surface Science, Vol.441, 303-316, 2018
Cobalt doped CuMnOx catalysts for the preferential oxidation of carbon monoxide
Carbon monoxide (CO) is a poisonous gas, recognized as a silent killer for the 21st century. It is produced from the partial oxidation of carbon containing compounds. The catalytic oxidation of CO receives a huge attention due to its applications in different fields. In the present work, hopcalite (CuMnOx) catalysts were synthesized using a co-precipitation method for CO oxidation purposes. Also, it was doped with the cobalt by varying concentration from 1 to 5wt%. It was observed that the addition of cobalt into the CuMnOx catalyst (by the deposition-precipitation method) improved the catalytic performance for the low-temperature CO oxidation. CuMnOx catalyst doped with 3wt% of cobalt exhibited most active performance and showed the highest activity than other cobalt concentrations. Different analytical tools (i.e. XRD, FTIR, BET, XPS and SEM-EDX) were used to characterize the as-synthesized catalysts. It was expected that the introduction of cobalt will introduce new active sites into the CuMnOx catalyst that are associated with the cobalt nano-particles. The order of calcination strategies based on the activity for cobalt doped CuMnOx catalysts was observed as: Reactive calcinations (RC) > flowing air > stagnant air. Therefore, RC (4.5% CO in air) route can be recommended for the synthesis of highly active catalysts. The catalytic activity of doped CuMnOx catalysts toward CO oxidation shows a correlation among average oxidation number of Mn and the position and the nature of the doped cobalt cation. (C) 2018 Elsevier B.V. All rights reserved.
Keywords:Carbon monoxide;Hopcalite (CuMnOx) catalyst;Co-precipitation;Doping;Characterization and reactive calcination