Applied Surface Science, Vol.441, 285-294, 2018
Constructing three-dimensional porous graphene-carbon quantum dots/g-C3N4 nanosheet aerogel metal-free photocatalyst with enhanced photocatalytic activity
Photocatalysis has been widely considered to be an effective way for solving the worldwide environmental pollution issues. Herein, a new type of three-dimensional (3D) ternary graphene-carbon quantum dots/g-C3N4 nanosheet (GA-CQDs/CNN) aerogel visible-light-driven photocatalyst was synthesized via a two-step hydrothermal method. In this unique ternary photocatalyst, both carbon quantum dots (CQDs) and reduced graphene oxide (rGO) could improve the visible light absorption and promote the charge separation. Furthermore, reduced graphene oxide (rGO) could act as a supportor for the 3D framework. Such a ternary system overcame the drawbacks of bulk g-C3N4 (BCN) and achieved the enhanced photocatalytic activity and long-term stability. As a result, the methyl orange (MO) removal ratio of GACQDs/CNN-24% was up to 91.1%, which was about 7.6 times higher than that of bulk g-C3N4 (BCN) under the identical conditions. Moreover that GA-CQDs/CNN-24% exhibited inappreciable loss of photocatalytic activity after four-cycle degradation processes. Finally, the photocatalytic mechanism of GA-CQDs/CNN24% was interpreted both theoretically and experimentally. (C) 2018 Elsevier B.V. All rights reserved.
Keywords:Photocatalysis;Visible-light;g-C3N4, graphene;Carbon quantum dots;Three-dimensional aerogel