Applied Surface Science, Vol.443, 581-591, 2018
Electrochemical properties of TiO2-V2O5 nanocomposites as a high performance supercapacitors electrode material
The individual components being ample, inexpensive and non-toxic material, TiO2-V2O5 has drawn more attention compared to other metal oxides. The cost-effective, non-toxic TiO2-V2O5 nanocomposites with various molar ratios of Ti and V have been synthesized through wet chemical method. Microstructure studies have been performed using X-ray diffraction (XRD), FESEM, HRTTEM and other spectroscopic (XPS, FTIR) techniques. The synthesized TiO2-V2O5 nanocomposite with molar ratio 10:20 exhibits 3D, mesoporous interlinked tube-like structure with excellent electrochemical properties by delivering highest specific capacitance of 310 F g(-1) at 2 mV s(-1) scan rate compared to individual TiO2 and V2O5 material. Increase in vanadium ratio plays a leading role to the chemical properties. The synergistic effects between TiO2 and V2O5 have also been observed in this work. Due to the excellent electrochemical as well as other acceptable performance, the porous interconnected tube like nanocomposite can be used for energy storage application mainly for pseudocapacitor electrode material. (C) 2018 Elsevier B.V. All rights reserved.