화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.28, No.4, 208-213, April, 2018
Heat Treatment of Carbonized Photoresist Mask with Ammonia for Epitaxial Lateral Overgrowth of a-plane GaN on R-plane Sapphire
E-mail:
Epitaxial (1120) a-plane GaN films were grown on a (1102) R-plane sapphire substrate with photoresist (PR) masks using metal organic chemical vapor deposition (MOCVD). The PR mask with striped patterns was prepared using an ex-situ lithography process, whereas carbonization and heat treatment of the PR mask were carried out using an in-situ MOCVD. The heat treatment of the PR mask was continuously conducted in ambient H2/NH3 mixture gas at 1140 °C after carbonization by the pyrolysis in ambient H2 at 1100 °C. As the time of the heat treatment progressed, the striped patterns of the carbonized PR mask shrank. The heat treatment of the carbonized PR mask facilitated epitaxial lateral overgrowth (ELO) of a-plane GaN films without carbon contamination on the R-plane sapphire substrate. Thhe surface morphology of a-plane GaN films was investigated by scanning electron microscopy and atomic force microscopy. The structural characteristics of a-plane GaN films on an R-plane sapphire substrate were evaluated by ω-2θ high-resolution X-ray diffraction. The a-plane GaN films were characterized by X-ray photoelectron spectroscopy (XPS) to determine carbon contamination from carbonized PR masks in the GaN film bulk. After Ar+ ion etching, XPS spectra indicated that carbon contamination exists only in the surface region. Finally, the heat treatment of carbonized PR masks was used to grow high-quality a-plane GaN films without carbon contamination. This approach showed the promising potential of the ELO process by using a PR mask.
  1. Nakamura S, Senoh M, Mukai T, Jpn. J. Appl. Phys., 30, L1708 (1991)
  2. Khan MA, Bhattarai A, Kuznia JN, Oison DT, Appl. Phys. Lett., 63, 1214 (1993)
  3. Morkoc H, Strite S, Gao GB, Lin ME, Sverdlov B, Burns M, J. Appl. Phys., 76, 1363 (1994)
  4. Im JS, Kollmer H, Off J, Sohmer A, Scholz F, Hangleiter A, Phys. Rev. B, 57, R9435 (1998)
  5. Langer R, Simon J, Ortiz V, Pelekanos NT, Barski A, Andre R, Godlewski M, Appl. Phys. Lett., 74, 3827 (1999)
  6. Lefebvre P, Morel A, Gallart M, Taliercio T, Allegre J, Gil B, Mathieu H, Damilano B, Grandjean N, Massies J, Appl. Phys. Lett., 78, 1252 (2001)
  7. Takeuchi T, Wetzel C, Yamaguchi S, Sakai H, Amano H, Akasaki I, Kaneko Y, Nakagawa S, Yamaoka Y, Yamada N, Appl. Phys. Lett., 73, 1691 (1998)
  8. Bernardini F, Fiorentini V, Phys. Rev. B, 57, R9427 (1998)
  9. Cingolani R, Botchkarev A, Tang H, Morkoc H, Traetta G, Coli G, Lomascolo M, Carlo AD, Sala FD, Lugli P, Phys. Rev. B, 61, 2711 (2000)
  10. Waltereit P, Brandt O, Trampert A, Grahn HT, Menniger J, Ramsteiner M, Reiche M, Ploog KH, Nature, 406, 865 (2000)
  11. Sun YJ, Brandt O, Cronenberg S, Dhar S, Grahn HT, Ploog KH, Waltereit P, Speck JS, Phys. Rev. B, 67, 041306 (2003)
  12. Craven MD, Lim SH, Wu F, Speck JS, Denbaars SP, Appl. Phys. Lett., 81, 469 (2002)
  13. Jang S, Lee D, Kwon JH, Kim SI, Yim SY, Lee J, Park JH, Byun D, Jpn. J. Appl. Phys., 52, 115501 (2012)
  14. Roder C, Einfeldt S, Figge S, Paskova T, Hommel D, Paskov PP, Monemar B, Behn U, Haskell BA, Fini PT, Nakamura S, J. Appl. Phys., 100, 103511 (2006)
  15. Kang BH, Lee JE, Kim DS, Bae S, Jung S, Park J, Jhin J, Byun D, J. Nanosci. Nanotechnol., 16, 11563 (2016)
  16. Lee CM, Kang BH, Kim DS, Byun D, Korean J. Mater. Res., 24(12), 645 (2014)
  17. Kim SI, Kim B, Jang S, Kim AY, Park J, Byun D, J. Cryst. Growth, 326(1), 200 (2011)
  18. Kim DS, Jeong WS, Ko H, Lee JS, Byun D, Thin Solid Films, 641, 2 (2017)
  19. Kim DS, Lee CM, Jeong WS, Cho SH, Jhin J, Byun D, J. Nanosci. Nanotechnol., 16, 11575 (2016)
  20. Chiu CH, Yen HH, Chao CL, Li ZY, Yu P, Kuo HC, Lu TC, Wang SC, Lau KM, Cheng SJ, Appl. Phys. Lett., 93, 081108 (2008)
  21. Smart JA, Chumbes EM, Schremer AT, Shealy JR, Appl. Phys. Lett., 75, 3820 (1999)
  22. Strittmatter A, Rodt S, Reißmann L, Bimberg D, Schroder H, Obermeier E, Riemann T, Christen J, Krost A, Appl. Phys. Lett., 78, 727 (2001)
  23. Vodenitcharova T, Zhang LC, Zarudi I, Yin Y, Domyo H, Ho T, Sato M, J. Mater. Process. Tech., 194, 52 (2007)
  24. Guzman G, Herrera M, Silva R, Vasquez GC, Maestre D, Semicond. Sci. Technol., 31, 055006 (2016)
  25. Sherwood TK, Maak RO, Ind. Eng. Chem. Fundam., 1, 111 (1962)
  26. Dijen FK, Pluijmakers J, J. Eur. Ceram. Soc., 5, 385 (1989)
  27. Lars GC, Felix S, Frank AP, Vivien P, Jesper K, Thomas B, Jens NK, Angew. Chem.-Int. Edit., 50, 4601 (2011)
  28. Cacace F, Wolf AP, J. Am. Chem. Soc., 87, 5301 (1965)
  29. Philip SB, Daniel MW, Paul M, J. Am. Chem. Soc., 105, 488 (1983)
  30. Uchida K, Watanabe A, Yano F, Kouguchi M, Tanaka T, Minagawa S, J. Appl. Phys., 79, 3487 (1996)
  31. Thakur V, Shivaprasad SM, Appl. Surf. Sci., 327, 389 (2015)