화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.61, 65-70, May, 2018
Controlled extracellular topographical and chemical cues for acceleration of neuronal development
E-mail:,
Physical and chemical cues, which have emerged as a promising strategy for regulating cellular behaviors, provide important signaling cues to living cells. Neurons are also exposed to distinguishing physical and chemical environments that can greatly influence their behaviors and functions. In this study, we proposed the laminin-coated matrix nanotopography platforms (LMNPs) that generate extracellular physical and chemical cues for neuronal development. Using our platforms, we showed that nanotopographical and biochemical cues could provide suitable environments for neuronal cultures. More importantly, we showed that a LMNPs could control the orientation of neuronal structures as well as accelerate neuronal development through synergistic effects of extracellular nanotopographical and chemical cues. Our study imparts new design principles on the role of nanotopographical and chemical cues in neuronal development for the fabrication of neuroprosthetic scaffolds.
  1. Park M, Oh E, Seo J, Kim MH, Cho H, Choi JY, Lee H, Choi IS, Small, 12, 1148 (2016)
  2. Gautam V, Naureen S, Shahid N, Gao Q, Wang Y, Nisbet D, Jagadish C, Daria VR, Nano Lett., 17, 3369 (2017)
  3. Arimura N, Kaibuchi K, Nat. Rev. Neurosci., 8, 194 (2007)
  4. Marcus M, Baranes K, Park M, Choi IS, Kang K, Shefi O, Adv. Healthc. Mater., 6, 170026 (2017)
  5. Hur EM, Yang IH, Kim DH, Byun J, Xu WL, Nicovich PR, Cheong R, Levchenko A, Thakor N, Zhou FQ, Proc. Natl. Acad. Sci., 108, 5057 (2011)
  6. Menager C, Arimura N, Fukata Y, Kaibuchi K, J. Neurochem., 89, 109 (2004)
  7. Mruthyunjaya S, Manchanda R, Godbole R, Pujari R, Shiras A, Shastry P, Biochem. Biophys. Res. Commun., 391(1), 43 (2010)
  8. Jang KJ, Kim MS, Feltrin D, Jeon NL, Suh JY, Pertz O, PLoS One, 5, e15966 (2010)
  9. Kim J, Park S, Kim YJ, Jeon CS, Lim KT, Seonwoo H, Cho SP, Chung TD, Choung PH, Choung YH, J. Biomed. Nanotechnol., 11, 2024 (2015)
  10. Bucaro MA, Vasquez Y, Hatton BD, Aizenberg J, ACS Nano, 6, 6222 (2012)
  11. Ferrari A, Cecchini M, Dhawan A, Micera S, Tonazzini I, Stabile R, Pisignano D, Beltram F, Nano Lett., 11, 505 (2011)
  12. Ketschek AR, Jones SL, Gallo G, Dev. Neurobiol., 67, 1305 (2007)
  13. Banker GA, Cowan WM, Brain Res., 126, 397 (1977)
  14. Manthorpe M, Engvall E, Ruoslahti E, Longo FM, Davis GE, Varon S, J. Cell Biol., 97, 1882 (1983)
  15. Dityatev A, Schachner M, Nat. Rev. Neurosci., 4, 456 (2003)
  16. Bonneh-Barkay D, Wiley CA, Brain Pathol., 19, 573 (2009)
  17. Barros CS, Franco SJ, Muller U, Cold Spring Harb. Perspect. Biol., 3, a00510 (2011)
  18. Franco SJ, Muller U, Dev. Neurobiol., 71, 889 (2011)
  19. Woo S, Gomez TM, J. Neurosci., 26, 1418 (2006)
  20. Luo L, Annu. Rev. Cell Dev. Biol., 18, 601 (2002)
  21. Bradke F, Dotti CG, Science, 283, 1931 (1999)
  22. Cho WK, Kang K, Kang G, Jang MJ, Nam Y, Choi IS, Angew. Chem.-Int. Edit., 49, 10114 (2010)
  23. Rogers SL, Letourneau PC, Palm SL, McCarthy J, Furcht LT, Dev. Biol., 98, 212 (1983)