Applied Chemistry for Engineering, Vol.29, No.2, 209-214, April, 2018
300 m3 h-1급 수소 생산을 위한 글리세롤 수증기 개질반응의 기술.경제성 분석
Techno-economic Analysis of Glycerol Steam Reforming for H2 Production Capacity of 300 m3 h-1
E-mail:
초록
본 논문에서는 300 m3 h-1급 수소 생산을 위한 글리세롤 수증기 개질반응에 대해 기술.경제성 평가를 수행하였다. 상업용 공정 설계 프로그램인 Aspen HYSYSⓡ를 이용하여 글리세롤 수증기 개질반응에 대한 공정을 설계하였으며, 반응 온도에 따른 수소 생산량의 차이를 비교.분석하였다. 또한, 항목별 경제성 평가, 민감도 분석, 현금흐름도를 통하여 경제성 평가를 진행하였으며, 300 m3 h-1급 글리세롤 수증기 개질반응에서의 수소 생산 단가는 5.10 $ kgH2 -1로 계산되었다. 수소 생산 단가에 영향을 끼치는 주요 인자를 파악하기 위해 민감도 분석을 실시하였으며, 수소 판매 단가에 따른 현금흐름도 분석을 통해 순현재가치, 할인회수기간, 현재가치율과 같은 다양한 경제성 인자를 파악하였다.
In this paper, the techno-economic analysis of glycerol steam reforming for H2 production capacity of 300 m3 h-1 was carried out. The process of glycerol steam reforming was constructed by using Aspen HYSYSⓡ, a commercial process simulator, and parametric studies for the effect of the operating temperature on H2 production was performed. Moreover, the economic analysis was conducted through an itemized cost estimation, sensitivity analysis (SA) and cash flow diagram (CFD), and the unit H2 production cost was 5.10 $ kgH2 -1 through the itemized cost estimation of glycerol steam reforming for H2 production capacity of 300 m3 h-1. SA was employed to identify key economic factors and various economic indicators such as net present value (NPV), discounted payback period (DPBP), and present value ratio (PVR) were found according to H2 selling price using CFD.
Keywords:glycerol steam reforming;techno-economic analysis;H2 production;sensitivity analysis;cash flow diagram
- Masnadi MS, Habibi R, Kopyscinski J, Hill JM, Bi XT, Lim CJ, Ellis N, Grace JR, Fuel, 117, 1204 (2014)
- Hejna A, Kosmela P, Formela K, Piszczyk L, Haponiuk JT, Renew. Sust. Energ. Rev., 66, 449 (2016)
- Sad ME, Duarte HA, Vignatti C, Padro CL, Apesteguia CR, Int. J. Hydrog. Energy, 40(18), 6097 (2015)
- Vaidya PD, Rodrigues AE, Chem. Eng. Technol., 32(10), 1463 (2009)
- Cheng CK, Foo SY, Adesina AA, Ind. Eng. Chem. Res., 49(21), 10804 (2010)
- Nobandegani MS, Birjandi MRS, Darbandi T, Khalilipour MM, Shahraki F, Mohebbi-Kalhori D, J. Nat. Gas Sci. Eng., 36, 540 (2016)
- Li K, Fu Q, Flytzani-Slephanopoulos M, Appl. Catal. B: Environ., 27(3), 179 (2000)
- Falcon RG, Alonso DV, Fernandez LMG, Perez-Lombard L, Fuel Process. Technol., 103, 110 (2012)
- Seyitoglu SS, Dincer I, Kilicarslan A, Int. J. Hydrog. Energy, 42(4), 2592 (2017)
- Lee B, Chae H, Choi NH, Moon C, Moon S, Lim H, Int. J. Hydrog. Energy, 42(10), 6462 (2017)
- Voldsund M, Jordal K, Anantharaman R, Int. J. Hydrog. Energy, 41(9), 4969 (2016)
- Senseni AZ, Rezaei M, Meshkani F, Chem. Eng. Res. Des., 123, 360 (2017)
- Silva JM, Soria MA, Madeira LM, Int. J. Hydrog. Energy, 41(3), 1408 (2016)
- Ou LW, Thilakaratne R, Brown RC, Wright MM, Biomass Bioenerg., 72, 45 (2015)
- Han W, Liu Z, Fang J, Huang J, Zhao H, Li Y, J. Clean Prod., 127, 567 (2016)
- Heo J, Lee B, Lim H, J. Clean Prod., 172, 2585 (2018)
- Kim S, Ryi SK, Lim H, Int. J. Hydrog. Energy, 43(11), 5881 (2018)
- Jeong S, Kim S, Lee B, Ryi SK, Lim H, Int. J. Hydrogen Energy, Doi:10.1016/j.ijhydene.2017.07.202.
- Turton R, Bailie RC, Whiting WB, Shaeiwitz JA, Bhattacharyya D, Analysis, Synthesis, and Design of Chemical Processes, 4th ed., Pearson Press, New Jersey, USA (2013).
- Nexant Inc., Task 1: Cost Estimates of Small Modular Systems, National Renewable Energy Laboratory Golden, CO, USA (2006).
- Yang C, Ogden J, Int. J. Hydrog. Energy, 32(2), 268 (2007)
- Hoffman Z, MS Thesis, Louisiana State University, Baton Rouge, LA, USA (2005).
- Lee B, Chae H, Choi NH, Moon C, Moon S, Lim H, Int. J. Hydrog. Energy, 42(10), 6462 (2017)
- Ahmed S, Papadias D, DOE Hydrogen Program, June 7-11, Washington DC, USA (2010).
- Song CF, Liu QL, Ji N, Kansha Y, Tsutsumi A, Appl. Energy, 154, 392 (2015)
- Gim B, Kim J, Ko H, Trans. Korean Hydrogen New Energy Soc., 22, 559 (2011)