Clean Technology, Vol.24, No.1, 55-62, March, 2018
양이온 교환 및 염 함침을 통한 메조다공성 실리카와 유기-금속 구조체의 수분 흡착 특성 조절
Control of Water-Adsorption Properties of Mesoporous Silica and MOF by Ion Exchange and Salt Impregnation
E-mail:,
초록
90 ℃ 이하의 저온열원 구동 수분 흡착식 냉방 시스템에 사용되는 흡착제는 효과적인 냉열 생산을 위해서 상대습도(P/P0)0.1 ~ 0.3에서 높은 수분 흡-탈착량 차를 보이는 것이 좋다. 메조다공성 실리카(MCM-41)와 다공성 유기-금속 구조체(MIL-101) 의 경우 최대 수분 흡착량은 많지만 상대습도(P/P0) 0.1 ~ 0.3 구간에서 각각 0.027 gwater gads -1, 0.074 gwater gads-1의 낮은 수분 흡-탈착량 차를 갖는다. 이 연구에서는 메조다공성 실리카와 다공성 유기-금속 구조체의 표면 성질을 조절하여 상대습도(P/P0) 0.1 ~ 0.3에서 수분 흡-탈착량 차를 증가시켰다. 주로 수분 흡착이 상대습도(P/P0) 0.5 ~ 0.7에서 일어나는 메조 다공성 실리카의 경우 알루미늄을 관능화 시킨 후에 염기도가 다른 여러 양이온(Na+, NH4+, (C2H5)4N+)들로 교환하거나 염 (CaCl2)을 20 wt% 함침하여 각각의 흡착제들에 대해 35 ℃에서 수분 흡착 등온선을 측정하였다. 양이온 교환 후 수분 흡착이 주로 일어나는 구간이 상대습도(P/P0) 0.5 부근으로 이동하였으나 여전히 상대습도(P/P0) 0.1 ~ 0.3에서 낮은 수분 흡-탈착량 차를 보였다. 하지만 흡습성을 갖는 염(CaCl2)을 20 wt% 함침한 메조다공성 실리카는 상대습도(P/P0) 0.1 ~ 0.3에서 수분 흡-탈착량 차가 0.027 gwater gads-1에서 0.152 gwater gads-1으로 증가하였다. 수분 흡착이 상대습도(P/P0) 0.3 ~ 0.5에서 주로 일어나는 다공성 유기-금속 구조체에도 염(CaCl2)을 20 wt% 함침하였더니 상대습도(P/P0) 0.1 ~ 0.3에서 수분흡-탈착량 차가 0.330 gwater gads -1까지 증가하였다.
The adsorbent used in water-adsorption cooling system utilizing low-temperature heat of below 90 ℃ is required to exhibit high water uptake capacity at a relative humidity (P/P0) between 0.1 and 0.3. Mesoporous silica (MCM-41) and MOF (MIL-101) exhibit quite large water adsorption capacity under saturated water vapor at 35 ℃. However, these adsorbents show small water adsorption capacity (0.027 gwater gads -1, 0.074 gwater gads -1, respectively) in the relative humidity (P/P0) range of 0.1 to 0.3. In this study, the surface properties of mesoporous silica and MOF were modified by simple methods to develop an adsorbent having a higher water uptake than the conventional water adsorbents at a relative humidity (P/P0) of 0.1 ~ 0.3. In the case of mesoporous silica (MCM-41) exhibiting mainly water adsorption at P/P0 = 0.5 ~ 0.7, aluminum species was functionalized on the mesopore walls and then cations existing near the aluminum were exchanged with various cations (e.g., Na+, NH4 +, and (C2H5)4N+). In addition, 20 wt% (to total weight of the composites) of hygroscopic inorganic salt (CaCl2) was impregnated on the MCM-41. In the case of the MIL-101 (MOF), 20 wt% of hygroscopic inorganic salt (CaCl2) was impregnated on the MIL-101. The MCM-41 which was ion-exchanged with various cations has main adsorption branch around 0.5 of P/P0 which was slightly shifted with low-pressure direction in comparison with pristine MCM-41. However, tiny increases were observed on the adsorption in the range of P/P0 between 0.1 and 0.3. After salt impregnation on the MCM-41, the adsorption capacity under P/P0 = 0.1 ~ 0.3 at 35 ℃ was increased from 0.027 gwater gads -1 to 0.152 gwater gads -1. In the case of MIL-101, the amount of water adsorption at 35 ℃ under P/P0 = 0.1 ~ 0.3 was increased from 0.074 gwater gads -1 to 0.330 gwater gads -1 after the salt impregnation.
- Wang LW, Wang RZ, Oliveira RG, Renew. Sust. Energ. Rev., 13(3), 518 (2009)
- Hong SW, Ahn SH, Kwon OK, Chung JD, J. Mech. Sci. Technol., 28(5), 1985 (2014)
- Hong SW, Ahn SH, Kwon OK, Chung JD, Int. J. Refrig., 49, 49 (2015)
- Hong SW, Kwon OK, Chung JD, J. Mech. Sci. Technol., 30(5), 2387 (2016)
- Hong SW, Kwon OK, Chung JD, Int. J. Refrig., 65, 142 (2016)
- Meunier F, Appl. Therm. Eng., 61(2), 830 (2013)
- Clausse M, Alarn KCA, Meunier F, Sol. Energy, 82(10), 885 (2008)
- Kayal S, Baichuan S, Saha BB, Int. J. Heat Mass Transfer, 92, 1120 (2013)
- Hong SW, Ahn SH, Chung JD, Bae KJ, Cha DA, Kwon OK, Appl. Therm. Eng., 104, 24 (2016)
- Li TX, Wang RZ, Li H, Prog. Energy Combust. Sci., 40, 1 (2014)
- Brown JS, Domanski PA, Appl. Therm. Eng., 64(1-4), 252 (2014)
- Niazmand H, Talebian H, Mahdavikhah M, Int. J. Refrig., 35, 2261 (2012)
- Zhang LZ, Wang L, Appl. Therm. Eng., 19(2), 195 (1999)
- Saha BB, Chakraborty A, Koyama S, Aristov YI, Int. J. Heat Mass Transf., 52(1-2), 516 (2009)
- Aristov VI, Restuccia G, Cacciola G, Parmon VN, Appl. Therm. Eng., 22(2), 191 (2002)
- Aristov YI, J. Heat Transfer Soc. Jpn., 45(192), 12 (2006)
- Aristov YI, J. Eng. Thermophys., 16(2), 63 (2007)
- Tso CY, Chan KC, Chao CYH, Wu CL, Int. J. Heat Mass Transf., 85, 343 (2015)
- Aristov YI, Vasiliev LL, J. Eng. Thermophys., 79(6), 1214 (2006)
- Gordeeva LG, Glaznev IS, Savchenko EV, Malakhov VV, Aristov YI, J. Colloid Interface Sci., 301(2), 685 (2006)
- Ng KC, Chua HT, Chung CY, Loke CH, Kashiwagi T, Akisawa A, Saha BB, Appl. Therm. Eng., 21, 1631 (2001)
- Meunier F, J. Heat. Recov. Syst., 6(6), 491 (1986)
- Kawano T, Kubota M, Onyango MS, Watanabe F, Matsuda H, Appl. Therm. Eng., 28(8-9), 865 (2008)
- Kittaka S, Ueda Y, Fujisaki F, Iiyama T, Yamaguchi T, Phys. Chem. Chem. Phys., 13, 17222 (2011)
- Jeremias F, Froehlich D, Janiak C, Henninger SK, New J. Chem., 38, 1846 (2014)
- Furukawa H, Gandara F, Zhang YB, Jiang JC, Queen WL, Hudson MR, Yaghi OM, J. Am. Chem. Soc., 136(11), 4369 (2014)
- Kim SN, Yang ST, Kim J, Park JE, Ahn WS, CrystEngComm., 14, 4142 (2012)
- Aristov YI, Appl. Therm. Eng., 50, 1610 (2013)
- Glaznev I, Ponomarenko I, Kirik S, Aristov YI, Int. J. Refrig., 34, 1244 (2011)
- Tokarev M, Gordeeva L, Rommanikov V, Glaznev I, Int. J. Therm. Sci., 41(5), 470 (2002)
- Kim C, Cho K, Kim SK, Lee EK, Kim JN, Choi M, Microporous Mesoporous Mater., 239, 310 (2017)
- Kim YD, Thu K, Ng KC, Desalination, 344, 350 (2014)
- Cho K, Kim SK, Lee EK, Kim JN, J. Nanosci. Nanotechnol., 17, 5869 (2017)
- Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I, Science, 309, 2040 (2005)