화학공학소재연구정보센터
Clean Technology, Vol.24, No.1, 55-62, March, 2018
양이온 교환 및 염 함침을 통한 메조다공성 실리카와 유기-금속 구조체의 수분 흡착 특성 조절
Control of Water-Adsorption Properties of Mesoporous Silica and MOF by Ion Exchange and Salt Impregnation
E-mail:,
초록
90 ℃ 이하의 저온열원 구동 수분 흡착식 냉방 시스템에 사용되는 흡착제는 효과적인 냉열 생산을 위해서 상대습도(P/P0)0.1 ~ 0.3에서 높은 수분 흡-탈착량 차를 보이는 것이 좋다. 메조다공성 실리카(MCM-41)와 다공성 유기-금속 구조체(MIL-101) 의 경우 최대 수분 흡착량은 많지만 상대습도(P/P0) 0.1 ~ 0.3 구간에서 각각 0.027 gwater gads -1, 0.074 gwater gads-1의 낮은 수분 흡-탈착량 차를 갖는다. 이 연구에서는 메조다공성 실리카와 다공성 유기-금속 구조체의 표면 성질을 조절하여 상대습도(P/P0) 0.1 ~ 0.3에서 수분 흡-탈착량 차를 증가시켰다. 주로 수분 흡착이 상대습도(P/P0) 0.5 ~ 0.7에서 일어나는 메조 다공성 실리카의 경우 알루미늄을 관능화 시킨 후에 염기도가 다른 여러 양이온(Na+, NH4+, (C2H5)4N+)들로 교환하거나 염 (CaCl2)을 20 wt% 함침하여 각각의 흡착제들에 대해 35 ℃에서 수분 흡착 등온선을 측정하였다. 양이온 교환 후 수분 흡착이 주로 일어나는 구간이 상대습도(P/P0) 0.5 부근으로 이동하였으나 여전히 상대습도(P/P0) 0.1 ~ 0.3에서 낮은 수분 흡-탈착량 차를 보였다. 하지만 흡습성을 갖는 염(CaCl2)을 20 wt% 함침한 메조다공성 실리카는 상대습도(P/P0) 0.1 ~ 0.3에서 수분 흡-탈착량 차가 0.027 gwater gads-1에서 0.152 gwater gads-1으로 증가하였다. 수분 흡착이 상대습도(P/P0) 0.3 ~ 0.5에서 주로 일어나는 다공성 유기-금속 구조체에도 염(CaCl2)을 20 wt% 함침하였더니 상대습도(P/P0) 0.1 ~ 0.3에서 수분흡-탈착량 차가 0.330 gwater gads -1까지 증가하였다.
The adsorbent used in water-adsorption cooling system utilizing low-temperature heat of below 90 ℃ is required to exhibit high water uptake capacity at a relative humidity (P/P0) between 0.1 and 0.3. Mesoporous silica (MCM-41) and MOF (MIL-101) exhibit quite large water adsorption capacity under saturated water vapor at 35 ℃. However, these adsorbents show small water adsorption capacity (0.027 gwater gads -1, 0.074 gwater gads -1, respectively) in the relative humidity (P/P0) range of 0.1 to 0.3. In this study, the surface properties of mesoporous silica and MOF were modified by simple methods to develop an adsorbent having a higher water uptake than the conventional water adsorbents at a relative humidity (P/P0) of 0.1 ~ 0.3. In the case of mesoporous silica (MCM-41) exhibiting mainly water adsorption at P/P0 = 0.5 ~ 0.7, aluminum species was functionalized on the mesopore walls and then cations existing near the aluminum were exchanged with various cations (e.g., Na+, NH4 +, and (C2H5)4N+). In addition, 20 wt% (to total weight of the composites) of hygroscopic inorganic salt (CaCl2) was impregnated on the MCM-41. In the case of the MIL-101 (MOF), 20 wt% of hygroscopic inorganic salt (CaCl2) was impregnated on the MIL-101. The MCM-41 which was ion-exchanged with various cations has main adsorption branch around 0.5 of P/P0 which was slightly shifted with low-pressure direction in comparison with pristine MCM-41. However, tiny increases were observed on the adsorption in the range of P/P0 between 0.1 and 0.3. After salt impregnation on the MCM-41, the adsorption capacity under P/P0 = 0.1 ~ 0.3 at 35 ℃ was increased from 0.027 gwater gads -1 to 0.152 gwater gads -1. In the case of MIL-101, the amount of water adsorption at 35 ℃ under P/P0 = 0.1 ~ 0.3 was increased from 0.074 gwater gads -1 to 0.330 gwater gads -1 after the salt impregnation.
  1. Wang LW, Wang RZ, Oliveira RG, Renew. Sust. Energ. Rev., 13(3), 518 (2009)
  2. Hong SW, Ahn SH, Kwon OK, Chung JD, J. Mech. Sci. Technol., 28(5), 1985 (2014)
  3. Hong SW, Ahn SH, Kwon OK, Chung JD, Int. J. Refrig., 49, 49 (2015)
  4. Hong SW, Kwon OK, Chung JD, J. Mech. Sci. Technol., 30(5), 2387 (2016)
  5. Hong SW, Kwon OK, Chung JD, Int. J. Refrig., 65, 142 (2016)
  6. Meunier F, Appl. Therm. Eng., 61(2), 830 (2013)
  7. Clausse M, Alarn KCA, Meunier F, Sol. Energy, 82(10), 885 (2008)
  8. Kayal S, Baichuan S, Saha BB, Int. J. Heat Mass Transfer, 92, 1120 (2013)
  9. Hong SW, Ahn SH, Chung JD, Bae KJ, Cha DA, Kwon OK, Appl. Therm. Eng., 104, 24 (2016)
  10. Li TX, Wang RZ, Li H, Prog. Energy Combust. Sci., 40, 1 (2014)
  11. Brown JS, Domanski PA, Appl. Therm. Eng., 64(1-4), 252 (2014)
  12. Niazmand H, Talebian H, Mahdavikhah M, Int. J. Refrig., 35, 2261 (2012)
  13. Zhang LZ, Wang L, Appl. Therm. Eng., 19(2), 195 (1999)
  14. Saha BB, Chakraborty A, Koyama S, Aristov YI, Int. J. Heat Mass Transf., 52(1-2), 516 (2009)
  15. Aristov VI, Restuccia G, Cacciola G, Parmon VN, Appl. Therm. Eng., 22(2), 191 (2002)
  16. Aristov YI, J. Heat Transfer Soc. Jpn., 45(192), 12 (2006)
  17. Aristov YI, J. Eng. Thermophys., 16(2), 63 (2007)
  18. Tso CY, Chan KC, Chao CYH, Wu CL, Int. J. Heat Mass Transf., 85, 343 (2015)
  19. Aristov YI, Vasiliev LL, J. Eng. Thermophys., 79(6), 1214 (2006)
  20. Gordeeva LG, Glaznev IS, Savchenko EV, Malakhov VV, Aristov YI, J. Colloid Interface Sci., 301(2), 685 (2006)
  21. Ng KC, Chua HT, Chung CY, Loke CH, Kashiwagi T, Akisawa A, Saha BB, Appl. Therm. Eng., 21, 1631 (2001)
  22. Meunier F, J. Heat. Recov. Syst., 6(6), 491 (1986)
  23. Kawano T, Kubota M, Onyango MS, Watanabe F, Matsuda H, Appl. Therm. Eng., 28(8-9), 865 (2008)
  24. Kittaka S, Ueda Y, Fujisaki F, Iiyama T, Yamaguchi T, Phys. Chem. Chem. Phys., 13, 17222 (2011)
  25. Jeremias F, Froehlich D, Janiak C, Henninger SK, New J. Chem., 38, 1846 (2014)
  26. Furukawa H, Gandara F, Zhang YB, Jiang JC, Queen WL, Hudson MR, Yaghi OM, J. Am. Chem. Soc., 136(11), 4369 (2014)
  27. Kim SN, Yang ST, Kim J, Park JE, Ahn WS, CrystEngComm., 14, 4142 (2012)
  28. Aristov YI, Appl. Therm. Eng., 50, 1610 (2013)
  29. Glaznev I, Ponomarenko I, Kirik S, Aristov YI, Int. J. Refrig., 34, 1244 (2011)
  30. Tokarev M, Gordeeva L, Rommanikov V, Glaznev I, Int. J. Therm. Sci., 41(5), 470 (2002)
  31. Kim C, Cho K, Kim SK, Lee EK, Kim JN, Choi M, Microporous Mesoporous Mater., 239, 310 (2017)
  32. Kim YD, Thu K, Ng KC, Desalination, 344, 350 (2014)
  33. Cho K, Kim SK, Lee EK, Kim JN, J. Nanosci. Nanotechnol., 17, 5869 (2017)
  34. Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I, Science, 309, 2040 (2005)