화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.2, 267-274, March, 2018
분쇄된 율피로 충전된 Poly(lactic acid) 복합재료의 유변학적 및 가공 특성
Rheological and Processing Properties of Poly(lactic acid) Composites Filled with Ground Chestnut Shell
E-mail:
Rheological behavior of the poly(lactic acid) (PLA) composites filled with ground chestnut shell (CN) was investigated. Application of various measuring techniques: small amplitude oscillatory shearing rheometry and capillary rheometry, allowed to determine in detail changes of rheological behavior and potential processing limitations of fully biodegradable composites modified by an organic waste filler. Different influence of the ground chestnut shell filler on PLA-based composites flow behavior was observed during rotational and capillary rheometry. Incorporation of particleshaped natural filler resulted in strong increase of composites’ complex viscosity. However, due to occurrence of significant wall slip during capillary flow, materials containing ground chestnut were characterized by improved processability which result in increased melt flow index (MFI).
  1. Mittal V, Chaudhry AU, Matsko NB, J. Appl. Polym. Sci., 131, 40816 (2014)
  2. Auras R, Harte B, Selke S, Macromol. Biosci., 4, 835 (2004)
  3. Bajpai PK, Singh I, Madaan J, J. Thermoplast. Compos., 27, 52 (2012)
  4. Maya JJ, Sabu T, Carbohydr. Polym., 71, 343 (2008)
  5. Ganster J, Erdmann J, Fink HP, Polimery-W, 58, 423 (2013)
  6. Elvers D, Song CH, Steinbuchel A, Leker J, Polym. Rev., 56, 584 (2016)
  7. Moustafa H, Guizani C, Dufresne A, J. Appl. Polym. Sci., 134, 44498 (2017)
  8. Farah S, Anderson DG, Lander R, Adv. Drug Deliv. Rev., 107, 367 (2016)
  9. Ndiaye D, Gueye M, Diop B, Arab. J. Sci. Eng., 38, 59 (2013)
  10. Kuranska M, Prociak A, Michalowski s, Cabulis U, Kirpluks M, Polimery-W, 61, 625 (2016)
  11. Schwarzkopf MJ, Burnard MD. Springer Science+Business, Singapore, 2016.
  12. Kord B, World Appl. Sci. J., 12, 1632 (2011)
  13. Saba N, Tahir PM, Jawaid M, Polymer, 6, 2247 (2014)
  14. Osburg VS, Strack M, Toporowski W, J. Clean. Prod., 110, 180 (2016)
  15. LeDuigou A, Davies P, Baley C, J. Biobased Mater. Bio., 5, 1 (2011)
  16. Sobczak L, Bruggemann O, Putz RF, J. Appl. Polym. Sci., 127(1), 1 (2013)
  17. Salasinska K, Polka M, Gloc M, Ryszkowska J, Polimery-W, 61, 255 (2016)
  18. Mohanty AK, Misra M, Drzal LT, Compos. Interf., 8, 313 (2001)
  19. Ojha S, Raghavendra G, Acharya SK, Polym. Compos., 35, 180 (2014)
  20. Fuqua MA, Chevali VS, Ulven CA, J. Appl. Polym. Sci., 127(2), 862 (2013)
  21. Wu CS, Hsu YC, Liao HT, Yen FS, Wang CY, Hsu CT, J. Appl. Polym. Sci., 131, 40730 (2014)
  22. Kaymakci A, Ayrilmis N, Gulec T, BioResources, 8, 592 (2013)
  23. Barczewski M, Matykiewicz D, Krygier A, Andrzejewski J, Skorczewska K, J. Mater. Cycles Waste Manag., DOI:10.1007/s10163-017-0658-5 (2017).
  24. Gai JG, Cao Y, J. Appl. Polym. Sci., 129(1), 354 (2013)
  25. Shumigin D, Tarasova E, Krumme A, Meier P, Mater. Sci-Medz., 17, 32 (2011)
  26. Mezger TG, The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers, Vincentz Network, Hannover, 2006.
  27. Azizi H, Ghasemi I, Polym. Compos., 30, 429 (2009)
  28. Maiti SN, Subbarao R, Ibrahim MN, J. Appl. Polym. Sci., 32, 1734 (1992)
  29. Gurp MV, Palmen J, Rheol. Bull., 67, 5 (1998)
  30. Gupta A, Simmons W, Schueneman GT, Hylton D, Mintz EA, ACS Sustain. Chem. Eng., 5, 1711 (2017)
  31. Kasgoz A, Akin D, Durmus A, Polym. Eng. Sci., 52(12), 2645 (2012)
  32. Mazzanti V, Mollica F, El Kissi N, Polym. Compos., 37, 3460 (2016)
  33. Li TQ, Wolcott MP, Composites Part A, 35, 303 (2004)
  34. Hristov V, Takacs E, Vlachopoulos J, Polym. Eng. Sci., 49, 1204 (2006)
  35. Lee CH, Sapuan SM, Lee JH, Hassan MR, SpringerPlus, 5, 1680 (2016)