화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.30, No.1, 21-28, February, 2018
Applications of Monte Carlo method to nonlinear regression of rheological data
E-mail:
In rheological study, it is often to determine the parameters of rheological models from experimental data. Since both rheological data and values of the parameters vary in logarithmic scale and the number of the parameters is quite large, conventional method of nonlinear regression such as Levenberg-Marquardt (LM) method is usually ineffective. The gradient-based method such as LM is apt to be caught in local minima which give unphysical values of the parameters whenever the initial guess of the parameters is far from the global optimum. Although this problem could be solved by simulated annealing (SA), the Monte Carlo (MC) method needs adjustable parameter which could be determined in ad hoc manner. We suggest a simplified version of SA, a kind of MC methods which results in effective values of the parameters of most complicated rheological models such as the Carreau-Yasuda model of steady shear viscosity, discrete relaxation spectrum and zero-shear viscosity as a function of concentration and molecular weight.
  1. Aarts E, Korst J, Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing, Wiley, New York 1989.
  2. Bae JE, Cho KS, J. Rheol., 59(4), 1081 (2015)
  3. Bae JE, Cho KS, J. Non-Newton. Fluid Mech., 235, 64 (2016)
  4. Baumgartel M, Winter HH, Rheol. Acta, 28, 511 (1989)
  5. Bird RB, Armstrong RC, Hassager O, Dynamics of Polymeric Liquids, Vol. 1: Fluid Mechanics, 2nd ed., Wiley-Interscience, New York 1987.
  6. Cho KS, Macromol. Res., 18(4), 363 (2010)
  7. Cho KS, J. Rheol., 57(2), 679 (2013)
  8. Cho KS, Viscoelasticity of Polymers: Theory and Numerical Algorithms, Springer, Netherlands, 2016.
  9. Fulchiron R, Verney V, Cassagnau P, Michel A, Levior P, Aubard H, J. Rheol., 37, 17 (1993)
  10. Fuoss RM, Kirkwood JG, J. Am. Chem. Soc., 63, 385 (1941)
  11. He CX, Wood-Adams P, Dealy JM, J. Rheol., 48(4), 711 (2004)
  12. Honerkamp J, Weese J, Macromolecules, 22, 4372 (1989)
  13. Honerkamp J, Weese J, Rheol. Acta, 21, 65 (1993)
  14. Jensen EA, J. Non-Newton. Fluid Mech., 107(1-3), 1 (2002)
  15. Kirkpatrick S, Gelatt CD, Vecchi MP, Science, 220, 671 (1983)
  16. Malkin AY, Masalova I, Rheol. Acta, 40(3), 261 (2001)
  17. Press WH, Teukolsky SA, Vetterling WT, Flannery BP, Numerical Recipes in C++: The Art of Scientiffic Computing, 2nd ed., Cambridge University Press, Cambridge 2002.
  18. Rubinstein M, Colby RH, Polymer Physics, Oxford University Press, New York, 2003.
  19. SIMHAMBHATLA M, LEONOV AI, Rheol. Acta, 32(6), 589 (1993)
  20. Stadler FJ, Bailly C, Rheol. Acta, 48(1), 33 (2009)
  21. Tobolsky AV, Murakami K, J. Polym. Sci. A: Polym. Chem., 40, 443 (1959)