Korean Journal of Chemical Engineering, Vol.35, No.3, 757-763, March, 2018
High Selectivity and removal efficiency of lotus root-based activated carbon towards Fe(III) in La(III) solution
E-mail:
Rare earth elements are an important strategic resource. However, a trace of Fe(III) impurity has serious adverse impact on the performance of rare earth materials. We synthesized a novel nitrogen-containing carbon material, ACLR-400, using lotus root as raw materials. The ACLR-400 was characterized by surface area analyzer, elemental analysis and FT-IR. The selectivity and removal efficiency of ACLR-400 towards Fe(III) were also investigated. The BET specific surface area of ACLR-400 was 68.44m2·g-1, and the average pore diameter was 12.54 nm. With abundant nitrogen- containing functional groups and well-developed internal pore structure, ACLR-400 possesses strong adsorption affinity, excellent selectivity and removal efficiency for Fe(III). The adsorption capacity of ACLR-400 towards Fe(III) could reach to 0.46mmol·g-1, selectivity coefficient with respect to La(III) was 8.9, and removal efficiency was 99.61%. The adsorption isotherm data greatly obey the Freundlich isotherm. In addition, ACLR-400 can be regenerated easily and possesses better regeneration ability and reusability.
- An FQ, Gao BJ, Huang XW, Zhang YQ, Li YB, Xu Y, Zhang ZG, Gao JF, Chen ZP, React. Funct. Polym., 73(1), 60 (2013)
- Ou GL, Gao JF, Hu TP, RSC Adv., 5, 71878 (2015)
- Tunsu C, Retegan T, Hydrometallurgy, 6, 139 (2016)
- Wang YY, Lu HH, Liu YX, Colloids Surf. A: Physicochem. Eng. Asp., 509, 550 (2016)
- An FQ, Wu RY, Li M, Environ. Chem. Eng., 5, 1638 (2017)
- Wang WS, Li YB, Gao BJ, Eng. Res. Des., 91, 2759 (2013)
- Peng WJ, Li HQ, Liu YY, J. Mol. Liq., 230, 496 (2017)
- Behdani FN, Rafsanjani AT, Torab-Mostaedi M, Mohammadpour SMAK, Korean J. Chem. Eng., 30(2), 448 (2013)
- Khan SB, Marwani HM, Seo J, Bull. Mat. Sci., 38, 327 (2015)
- Sui N, Huang K, Lin JY, Li XP, Wang XQ, Xiao CX, Liu HZ, Sep. Purif. Technol., 127, 97 (2014)
- Rahman MM, Khan SB, Marwani HM, J. Taiwan Inst. Chem. E., 45, 1964 (2014)
- Karim MR, Takehira H, Rahman MM, J. Organomet. Chem., 808, 42 (2016)
- Saha PD, Chowdhury S, Datta S, Sanyal SK, Korean J. Chem. Eng., 29(8), 1086 (2012)
- Gao B, Meng J, Xu Y, Zhang Y, J. Ind. Eng. Chem., 24, 351 (2015)
- Park CM, Han J, Chu KH, Al-Hamadani YAJ, Her N, Heo J, Yoon Y, J. Ind. Eng. Chem., 48, 186 (2017)
- Ryoo KS, Jung SY, Sim H, Bull. Korean Chem. Soc., 34, 2753 (2013)
- Li B, Yang L, Wang CQ, Chemosphere, 175, 332 (2017)
- Han X, Lin HF, Zheng Y, J. Hazard. Mater., 297, 217 (2015)
- Lu XC, Jiang JC, Sun K, Bull. Korean Chem. Soc., 35, 103 (2014)
- Zhou Y, Apul OG, Karanfil T, Water Res., 79, 57 (2015)
- Zhang Z, Feng X, Yue XX, An FQ, Zhou WX, Gao JF, Hu TP, Wei CC, Korean J. Chem. Eng., 32(8), 1564 (2015)
- Bhati S, Mahur JS, Dixit S, Bull. Korean Chem. Soc., 34, 569 (2013)
- Essandoh M, Wolgemuth D, Pittman CU, Chemosphere, 174, 49 (2017)
- Tan ZX, Wang YH, Kasiuliene A, Clean Technol. Environ. Policy., 19, 761 (2017)
- Zou ZM, Tang YL, Jiang CH, J. Environ. Chem. Eng., 3, 898 (2015)
- Li B, Yang L, Wang CQ, Chemosphere, 175, 332 (2017)
- Yun YS, Kim D, Park HH, Synth. Met., 162, 2337 (2012)
- Kim JH, Cho S, Bae TS, Sens. Actuators B-Chem., 197, 20 (2014)
- Rosas JM, Bedia J, Rodriguez-Mirasol J, Cordero T, Ind. Eng. Chem. Res., 47(4), 1288 (2008)
- Suresh JRP, Chandrasekaran V, Pol. J. Chem. Tech., 14, 88 (2012)
- Rouquerol J, Avnir D, Fairbridge CW, Pure Appl. Chem., 66, 1739 (1994)
- Thommes M, Guillet-Nicolas R, Cychosz KA, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 349 (2015).
- Lagergren S, Svenska K, Vetensk Akad. Handl., 24, 1 (1898).
- Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
- Langmuir I, J. Am. Chem. Soc., 38, 2221 (1916)
- Freundlich HMF, Z. Phys. Chem., 57, 385 (1906)