화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.3, 757-763, March, 2018
High Selectivity and removal efficiency of lotus root-based activated carbon towards Fe(III) in La(III) solution
E-mail:
Rare earth elements are an important strategic resource. However, a trace of Fe(III) impurity has serious adverse impact on the performance of rare earth materials. We synthesized a novel nitrogen-containing carbon material, ACLR-400, using lotus root as raw materials. The ACLR-400 was characterized by surface area analyzer, elemental analysis and FT-IR. The selectivity and removal efficiency of ACLR-400 towards Fe(III) were also investigated. The BET specific surface area of ACLR-400 was 68.44m2·g-1, and the average pore diameter was 12.54 nm. With abundant nitrogen- containing functional groups and well-developed internal pore structure, ACLR-400 possesses strong adsorption affinity, excellent selectivity and removal efficiency for Fe(III). The adsorption capacity of ACLR-400 towards Fe(III) could reach to 0.46mmol·g-1, selectivity coefficient with respect to La(III) was 8.9, and removal efficiency was 99.61%. The adsorption isotherm data greatly obey the Freundlich isotherm. In addition, ACLR-400 can be regenerated easily and possesses better regeneration ability and reusability.
  1. An FQ, Gao BJ, Huang XW, Zhang YQ, Li YB, Xu Y, Zhang ZG, Gao JF, Chen ZP, React. Funct. Polym., 73(1), 60 (2013)
  2. Ou GL, Gao JF, Hu TP, RSC Adv., 5, 71878 (2015)
  3. Tunsu C, Retegan T, Hydrometallurgy, 6, 139 (2016)
  4. Wang YY, Lu HH, Liu YX, Colloids Surf. A: Physicochem. Eng. Asp., 509, 550 (2016)
  5. An FQ, Wu RY, Li M, Environ. Chem. Eng., 5, 1638 (2017)
  6. Wang WS, Li YB, Gao BJ, Eng. Res. Des., 91, 2759 (2013)
  7. Peng WJ, Li HQ, Liu YY, J. Mol. Liq., 230, 496 (2017)
  8. Behdani FN, Rafsanjani AT, Torab-Mostaedi M, Mohammadpour SMAK, Korean J. Chem. Eng., 30(2), 448 (2013)
  9. Khan SB, Marwani HM, Seo J, Bull. Mat. Sci., 38, 327 (2015)
  10. Sui N, Huang K, Lin JY, Li XP, Wang XQ, Xiao CX, Liu HZ, Sep. Purif. Technol., 127, 97 (2014)
  11. Rahman MM, Khan SB, Marwani HM, J. Taiwan Inst. Chem. E., 45, 1964 (2014)
  12. Karim MR, Takehira H, Rahman MM, J. Organomet. Chem., 808, 42 (2016)
  13. Saha PD, Chowdhury S, Datta S, Sanyal SK, Korean J. Chem. Eng., 29(8), 1086 (2012)
  14. Gao B, Meng J, Xu Y, Zhang Y, J. Ind. Eng. Chem., 24, 351 (2015)
  15. Park CM, Han J, Chu KH, Al-Hamadani YAJ, Her N, Heo J, Yoon Y, J. Ind. Eng. Chem., 48, 186 (2017)
  16. Ryoo KS, Jung SY, Sim H, Bull. Korean Chem. Soc., 34, 2753 (2013)
  17. Li B, Yang L, Wang CQ, Chemosphere, 175, 332 (2017)
  18. Han X, Lin HF, Zheng Y, J. Hazard. Mater., 297, 217 (2015)
  19. Lu XC, Jiang JC, Sun K, Bull. Korean Chem. Soc., 35, 103 (2014)
  20. Zhou Y, Apul OG, Karanfil T, Water Res., 79, 57 (2015)
  21. Zhang Z, Feng X, Yue XX, An FQ, Zhou WX, Gao JF, Hu TP, Wei CC, Korean J. Chem. Eng., 32(8), 1564 (2015)
  22. Bhati S, Mahur JS, Dixit S, Bull. Korean Chem. Soc., 34, 569 (2013)
  23. Essandoh M, Wolgemuth D, Pittman CU, Chemosphere, 174, 49 (2017)
  24. Tan ZX, Wang YH, Kasiuliene A, Clean Technol. Environ. Policy., 19, 761 (2017)
  25. Zou ZM, Tang YL, Jiang CH, J. Environ. Chem. Eng., 3, 898 (2015)
  26. Li B, Yang L, Wang CQ, Chemosphere, 175, 332 (2017)
  27. Yun YS, Kim D, Park HH, Synth. Met., 162, 2337 (2012)
  28. Kim JH, Cho S, Bae TS, Sens. Actuators B-Chem., 197, 20 (2014)
  29. Rosas JM, Bedia J, Rodriguez-Mirasol J, Cordero T, Ind. Eng. Chem. Res., 47(4), 1288 (2008)
  30. Suresh JRP, Chandrasekaran V, Pol. J. Chem. Tech., 14, 88 (2012)
  31. Rouquerol J, Avnir D, Fairbridge CW, Pure Appl. Chem., 66, 1739 (1994)
  32. Thommes M, Guillet-Nicolas R, Cychosz KA, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 349 (2015).
  33. Lagergren S, Svenska K, Vetensk Akad. Handl., 24, 1 (1898).
  34. Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
  35. Langmuir I, J. Am. Chem. Soc., 38, 2221 (1916)
  36. Freundlich HMF, Z. Phys. Chem., 57, 385 (1906)