화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.59, 50-55, March, 2018
Monomer composition effects on thermal properties of transparent poly(methyl methacrylate-co-isobornyl methacrylate-co-cyclohexyl maleimide) terpolymers
E-mail:
Terpolymers based on methyl methacrylate (MMA), isobornyl methacrylate (IBOMA) and N-cyclohexyl maleimide (ChMI) were synthesized by conventional free-radical solution copolymerization. The mole fraction of all polymers was characterized by elemental analysis and 1H NMR spectroscopy. The thermal and thermomechanical properties of all polymer series having different comonomer compositions were investigated by DSC, TGA, DMTA and TMA. The results showed improved heat resistance characteristics, in which both the glass transition and decomposition temperatures of the terpolymers were heightened with increasing IBOMA and ChMI comonomer content, due to their bulky pendent group and rigid imide ring structure. Furthermore, the dynamic mechanical properties as well as dimensional stability of the terpolymers increased with a higher IBOMA and ChMI content without sacrificing a high transparency of pure PMMA.
  1. Hu W, Guo H, Chen Y, Xie R, Jiang H, He P, Eur. Polym. J., 85, 313 (2016)
  2. Mohammadi M, Fazli H, Karevan M, Davoodi J, Eur. Polym. J., 91, 121 (2017)
  3. Kim G, Eur. Polym. J., 41, 1729 (2005)
  4. Cho Y, Choi YK, Sohn SH, Appl. Phys. Lett., 89, 051102 (2006)
  5. Shekar B, Na M, Lee J, Rhee SW, Mol. Cryst. Liq. Cryst., 42, 43 (2004)
  6. Kim WS, Chang HS, Jeong YC, Lee YM, Park JK, Shin CW, Kim N, Tak HJ, Opt. Commun., 249, 65 (2005)
  7. Koike Y, Polymer, 32, 1937 (1991)
  8. Hu J, Zhou Y, Sheng X, J. Mater. Chem., 3, 2223 (2015)
  9. Suthabanditpong W, Tani M, Takai C, Fuji M, Buntem R, Shirai T, Adv. Powder Technol., 27(2), 454 (2016)
  10. Ghosh A, Sen SK, Banerjee S, Voit B, RSC Adv., 2, 5990 (2012)
  11. Doi T, Akimoto A, Matsumoto A, Otsu T, J. Polym. Sci. A: Polym. Chem., 34(3), 367 (1996)
  12. Tordjeman P, Teze L, Halary JL, Monnerie L, Polym. Eng. Sci., 37(10), 1621 (1997)
  13. Kita Y, Kishino K, Nakagawa K, J. Appl. Polym. Sci., 63(8), 1055 (1997)
  14. Dong SS, Wei YZ, Zhang ZQ, J. Appl. Polym. Sci., 72(10), 1335 (1999)
  15. Wang DJ, Gu CB, Chen PL, Liu SX, Zhen Z, Zhang JC, Liu XH, J. Appl. Polym. Sci., 87(2), 280 (2003)
  16. Matsumoto A, Mizuta K, Otsu T, J. Polym. Sci. A: Polym. Chem., 31, 2531 (1993)
  17. Hadjichristidis N, Mays J, Ferry W, Fetters LJ, J. Polym. Sci. B: Polym. Phys., 22, 1745 (1984)
  18. Yu JM, Dubois P, Jerome R, Macromolecules, 29(23), 7316 (1996)
  19. Doi T, Sugiura Y, Yukioka S, Akimoto A, J. Appl. Polym. Sci., 61(5), 853 (1996)
  20. Kita Y, Kishino K, Nakagawa K, J. Appl. Polym. Sci., 63(3), 363 (1997)
  21. Dong SS, Wei YZ, Zhang ZQ, J. Appl. Polym. Sci., 72(10), 1335 (1999)
  22. Schnell M, Borrajo J, Williams RJJ, Wolf BA, Macromol. Mater. Eng., 289, 642 (2004)
  23. Pazhanisamy P, Reddy BSR, Express Polym. Lett., 1, 740 (2007)
  24. MaCormick CL, Blackmon KP, Polymer, 27, 1971 (1986)
  25. Park SI, Lee SI, Hong SJ, Cho KY, Macromol. Res., 15(5), 418 (2007)
  26. Odian G, Principles of Polymerization, John Wiley, New York, 1991.
  27. Yang L, Sun D, Li Y, Liu G, Cao J, J. Appl. Polym. Sci., 84, 1070 (2003)
  28. Kuo SW, Kao HC, Chang FC, Polymer, 44(22), 6873 (2003)
  29. Jiang X, Yan D, Zhong Y, Liu W, Chen Q, Polym. Int., 49, 893 (2000)
  30. Legay R, Roussel J, Boutevin B, J. Appl. Polym. Sci., 76(13), 1876 (2000)
  31. Otsu T, Matsumoto A, Kubota T, Polym. Int., 25, 179 (1991)
  32. Bikiaris D, Prinos J, Botev M, Betchev C, Panayiotou C, J. Appl. Polym. Sci., 93(2), 726 (2004)
  33. Lionetto F, Montagna F, Maffezzoli A, Appl. Rheol., 15, 326 (2005)
  34. Hagiwara K, Ougizawa T, Inoue T, Hirata K, Kobayashi Y, Radiat. Phys. Chem., 58, 525 (2000)