Applied Chemistry for Engineering, Vol.29, No.1, 62-66, February, 2018
KOH/La2O3 촉매상에서 Styrenated Phenol과 Ethylene Carbonate의 반응으로부터 Styrenated Phenol Alkoxylate의 합성
Synthesis of Styrenated Phenol Alkoxylate from Styrenated Phenol with Ethylene Carbonate over KOH/La2O3 Catalyst
E-mail:
초록
Styrenated phenol alkoxylate (SP-A)는 일반적으로 균일계 염기 촉매 하에서 styrenated phenol (SP)과 ethylene oxide (EO) 로부터 제조되어진다. 그러나, 취급이 용이하지 않은 EO를 사용하려면 고압반응장치를 이용한 반응공정 제어가 필요하다. 또한, 균일계 염기 촉매를 사용하면 반응종결 후에 잔존하는 염기를 제거하기 위한 중화공정이 필요하고, 촉매 와 생성물의 분리가 어렵다는 문제점이 있다. 따라서, 본 연구에서는 균일계 염기 촉매를 사용하지 않고 불균일계 염기 촉매를 사용하여 SP와 ethylene carbonate (EC)의 반응으로부터 제조된 SP-A에 대하여 보고하고자 한다. SP-A의 제조에 사용된 불균일계 염기 촉매는 KOH를 La2O3에 담지시킨 후, 소성하여 얻었다. 또한, EO 대신 EC를 사용함으로써 고압반응이 아닌 상압반응 조건에서 SP-A제조가 가능하였다. 합성된 SP-A의 평균 분자량 크기는 반응조건에 따라서 매우 다양하게 나타났다. KOH/La2O3촉매 하에서 제조된 SP-A의 평균 분자량 크기는 반응온도, 촉매의 첨가량 및 EC의 첨가량을 조절함으로써 임의로 조절이 가능하였다.
Styrenated phenol alkoxylates (SP-A) were prepared from styrenated phenol (SP) and ethylene oxide (EO) under a homogeneous base catalyst. However, to use EO that is difficult to handle, a high-pressure reaction device capable of controlling the reaction process should be used. Additionally, when a homogeneous base catalyst is used, a neutralization process is required to remove residual bases after the reaction, and it is also difficult to separate the catalyst and the product. Therefore, in this study, we report the results of SP-A prepared from the reaction of SP and EC using only heterogeneous base catalysts. The heterogeneous base catalyst was obtained by supporting KOH on La2O3 and calcintion. Using EC instead of EO, it was possible to produce SP-A under the atmospheric rather than high-pressure reaction condition. Average molecular weights of synthesized SP-A varied greatly depending on reaction conditions. The average molecular weight of SP-A prepared using the KOH/La2O3 catalyst could be controlled arbitrarily by controlling the reaction temperature and added catalyst and EC amounts.
- Song HB, Ahn GE, Hwang BM, Lee UH, Kim JR, Jung BJ, Gang BH, Korean Patent 101,571,753 (2015).
- Lim JC, Park JS, Han DS, Kim JS, Lee S, Mo DH, Lee JS, Appl. Chem. Eng., 6, 521 (2012)
- Nie C, Chinese Patent 104,926,618 (2015).
- Wang L, Qin D, Chinese Patent 106,279,664 (2016).
- Toshiaki I, Yoshitaka U, Japanese Patent 143,075 (2004).
- Klumpe and Marcus, Korean Patent 100,005,856 (2014).
- Yun HJ, Lee YH, Son SH, Chung MC, Jang MK, Shin EJ, Jung SH, Kwak WB, Jeong WJ, Ahn HG, J. Nanosci. Nanotechnol., 17, 2776 (2017)
- Kim KJ, Ahn HG, Appl. Catal. B: Environ., 91(1-2), 308 (2009)
- Pacia RM, Pyo SW, Ko YS, Appl. Chem. Eng., 4, 473 (2017)
- Kim KW, Lee SM, Hong SC, Appl. Chem. Eng., 5, 474 (2014)
- Lee SM, Choi HJ, Hong SC, Appl. Chem. Eng., 1, 119 (2012)
- Kinage AK, Gupte SP, Chaturvedi RK, Chaudhari RV, Catal. Commun., 9, 1649 (2008)
- Wu J, Zhang J, Wang X, Sun L, Chinese Patent 102875799 (2013).
- Feng J, Li X, Wang M, Zheng X, Bai J, Wang L, Peng Y, RSC Adv., 5, 16093 (2015)
- Savage NO, Akbar SA, Dutta PK, Sens. Actuators B-Chem., 72, 239 (2001)
- Klingenberg B, Vannice MA, Appl. Catal. B: Environ., 21(1), 19 (1999)
- Hu CG, Liu H, Dong WT, Zhang YY, Bao G, Lao CS, Wang ZL, Adv. Mater., 19(3), 470 (2007)
- Mohamad AA, Mohamed NS, Yahya MZA, Othman R, Ramesh S, Alias Y, Arof AK, Solid State Ion., 156(1-2), 171 (2003)
- Ziosi P, Tabanelli T, Fornasari G, Cocchi S, Cavani F, Righi P, Catal. Sci. Technol., 4, 4386 (2014)