화학공학소재연구정보센터
Solar Energy, Vol.155, 314-322, 2017
Synthesis of pillared clays from metallic salts as pigments for thermosolar absorptive coatings
A general procedure for developing stable solar absorptive coatings at both high temperature and a high solar radiation concentration is presented. In order to generally improve thermal efficiency, a coating with high solar absorptance is applied all over the surface of receiver tubes that is subjected to extreme working conditions. Consequently, a durable coating with high absorptivity for sunlight is needed. An alternative paint formulation research and development line to Pyromark-2500, the paint currently used in many commercial solar thermal power plants (CSP) is proposed. Pigment synthesis is developed by intercalating metallic salts into laminar or tubular clay structures. Metallic pxides, which provide paint with its color properties, are obtained by a calcination process. Addition of silane or surfactants during the pigment synthesis is also optimized. Once dried and ground to a precise size, pigments are mixed with a commercial binder and applied to a metallic substrate to study their properties. Thermal stability to high temperature is studied with different tests. The results showed that laminar structure was preferred to intercalate larger amounts of metallic salt into the clay structure, and no significant differences were found when using silane or surfactant modifiers. Although the highest absorptivity value was 85% after 24 h at 600 degrees C, samples presented very good adherence to the metallic substrate. Addition of a small quantity of commercial black pigment to the paint composition could improve the absorptivity and maintain the excellent adhesion shown. Furthermore, montmorillonite clay, modified with a surfactant before adding metallic salt, and without silane, resulted in a black pigment in a powder form. This pillared clay could be used in future paint formulations. (C) 2017 Elsevier Ltd. All rights reserved.