Solar Energy, Vol.158, 610-616, 2017
Influence of Ag nanoparticles microstructure on their optical and plasmonic properties for photovoltaic applications
This paper shows an experimental attempt to approach plasmonic structure of silver nanoparticles (NPs) for photovoltaic application optimized previously for front side of thin film silicon solar cells. For that purpose the synthesis of high concentration of 100 and 140 nm Ag nanoparticles suspensions and layer-by-layer deposition method was applied. The results of electrical and optical studies of silicon solar cells with Ag nanoparticles as well as the microstructure of nanoparticles assemblies examined by SEM are presented. The results of these measurements are compared with theoretically predicted ones for optimized case and are the basis for further simulation analysis of the influence of the microstructure of actual nanoparticles assemblies. The simulations cover particles size distribution, the presence of agglomerates and arrangement. The results of these simulations show that the microstructure parameters decide on the plasmonic properties leading to the limited cell performance enhancement. Here we present more than 12% increase of short circuit current density and perspectives for further improvement. The outcomes of these studies have a general character and should be considered for optimization of other plasmonic structures used in photovoltaic and optoelectronic devices.