화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.102, No.7, 1260-1269, 1998
Adsorption of dimethyl methylphosphonate on self-assembled alkanethiolate monolayers
The adsorption of dimethyl methylphosphonate (DMMP), a model molecule for sarin, on three different organic interfaces, prepared by solution self-assembly of alkanethiols on gold, was followed by a surface acoustic wave mass sensor and infrared reflection-absorption spectroscopy at room temperature. The surfaces, characterized by the following tail groups (-OH, -CH3, -COOH), show both quantitative and qualitative differences concerning the interaction with DMMP, the acid surface giving rise to the strongest adsorption. Results obtained in UHV, at low temperatures using infrared spectroscopy and temperature-programmed desorption, support this observation and give complementary information about the nature of the interaction. The hydrogen-bond-accepting properties of the P=O part of DMMP and its impact on the design of sensing interfaces based on hydrogen bonding, as well as the use of self-assembled monolayers to study molecular interactions, are discussed.