Journal of Power Sources, Vol.370, 36-44, 2017
In-situ study of the gas-phase composition and temperature of an intermediate-temperature solid oxide fuel cell anode surface fed by reformate natural gas
An innovative experimental setup is used for in-depth and in-operando characterization of solid oxide fuel cell anodic processes. This work focuses on the heterogeneous reactions taking place on a 121 cm(2) anode-supported cell (ASC) running with a H-2, CH4, CO2, CO and steam gas mixture as a fuel, using an operating temperature of 923 K. The results have been obtained by analyzing the gas composition and temperature profiles along the anode surface in different conditions: open circuit voltage (OCV) and under two different current densities, 165 mA cm(-2) and 330 mA cm(-2), corresponding to 27% and 54% of fuel utilization, respectively. The gas composition and temperature analysis results are consistent, allowing to monitor the evolution of the principal chemical and electrochemical reactions along the anode surface. A possible competition between CO2 and H2O in methane internal reforming is shown under OCV condition and low current density values, leading to two different types of methane reforming: Steam Reforming and Dry Reforming. Under a current load of 40 A, the dominance of exothermic reactions leads to a more marked increase of temperature in the portion of the cell close to the inlet revealing that current density is not uniform along the anode surface. (C) 2017 Elsevier B.V. All rights reserved.
Keywords:Intermediate temperature-solid oxide fuel cells;Syngas composition;Heterogeneous reactions;Gas chromatography;Temperature analysis;Anode processes