- Previous Article
- Next Article
- Table of Contents
Inorganic Chemistry, Vol.56, No.23, 14373-14382, 2017
Mixed Valency as a Strategy for Achieving Charge Delocalization in Semiconducting and Conducting Framework Materials
The fundamentally important phenomenon of mixed valency has been discussed in detail over the past 50 years, predominantly in the context of dinuclear complexes, which are used as model systems for understanding electron delocalization in more complex biological and physical systems. Very recently, mixed valency has been shown to be an important mechanism for charge transfer, leading to delocalization and conductivity in two- and three-dimensional framework materials such as metal-organic frameworks and related systems including covalent organic frameworks and semicrystalline semiconducting metal-organic graphenes. This Viewpoint provides a current perspective on the field of mixed-valence frameworks, where the property is either intrinsic or generated postsynthetically via an external stimulus. Aspects of the spectroscopy and applications of these materials are also discussed, highlighting the future potential for exploiting mixed valency in extended solid-state systems.