Applied Surface Science, Vol.429, 218-224, 2018
Cu-SnO2 nanostructures obtained via galvanic replacement control as high performance anodes for lithium-ion storage
SnO2 has been considered as a promising anode material for lithium ion batteries (LIBs) because of its high theoretical capacity (782 mAh g(-1)). However, the reaction between lithium ions and Sn causes a large volume change, resulting in the pulverization of the anode, a loss of contact with the current collector, and a deterioration in electrochemical performance. Several strategies have been proposed to mitigate the drastic volume changes to extend the cyclic life of SnO2 materials. Herein, novel composites consisting of Cu and SnO2 were developed via the galvanic replacement reaction. The reaction was carried out at 180 degrees C for different durations and triethylene glycol was used as the medium solvent. The structure, morphology, and composition of the composites were analyzed by X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The reaction time affected the particle size, which in turn affected the reaction kinetics. Furthermore, the novel nanostructures contained an inactive metal phase (Cu), which acted both as the buffer space against the volume change of Sn during the alloying reaction and as the electron conductor, resulting in a lower impedance of the composites. When evaluated as potential anodes for LIBs, the composite electrodes displayed extraordinary electrochemical performance with a high capacity and Coulombic efficiency, an excellent cycling stability, and a superior rate capability compared to a Sn electrode. (C) 2017 Elsevier B.V. All rights reserved.
Keywords:Lithium-ion batteries;Tin dioxide nanoparticles;Copper;Composite anodes;Galvanic replacement reaction