화학공학소재연구정보센터
Applied Surface Science, Vol.434, 967-974, 2018
Co3O4/CoP composite hollow polyhedron: A superior catalyst with dramatic efficiency and stability for the room temperature reduction of 4-nitrophenol
In the present work, Co3O4/CoP composite hollow polyhedrons were prepared and characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and N-2 adsorption-desorption isotherms. Then, the catalytic activity of the as-prepared Co3O4/CoP hollow polyhedrons was evaluated for the borohydride-assisted reduction of 4-nitrophenol at room temperature. The results indicate that the as-prepared Co3O4/CoP hollow polyhedrons are an efficient recyclable catalyst for the reduction of 4-nitrophenol. When the 4-nitrophenol initial concentration is 1.0 x 10(-4) mol L-1 (100 mL), almost 100% 4-nitrophenol can be reduced within 3 min in the presence of the Co3O4/CoP hollow polyhedrons. The apparent rate constant of the 4-nitrophenol reduction is 1.61 min(-1) at room temperature, and the activity factor is about 5.37 x 10(4) mL min(-1) g(-1), which is almost two times higher than that over Ag nanoparticles. Finally, the catalytic mechanism was preliminarily discussed. It is found that CoP plays an important role in the catalytic process. Here, CoP serves as active sites, which leads to efficient formation of hydrogen atoms from BH4- and fast electron transfer. (C) 2017 Elsevier B.V. All rights reserved.