Applied Microbiology and Biotechnology, Vol.102, No.1, 211-223, 2018
Substrate specificity and membrane topologies of the iron-containing omega 3 and omega 6 desaturases from Mortierella alpina
Polyunsaturated fatty acids (PUFAs) are essential lipids for cell function, normal growth, and development, serving as key structural components of biological membranes and modulating critical signal transduction events. Omega-3 (n-3) long chain PUFAs (LC-PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to protect against inflammatory diseases and enhance brain development and function. This had led to a marked increase in demand for fish and fish oils in human diets, supplements, and aquaculture and created a need for new, sustainable n-3 LC-PUFA sources. We have studied for the first time homogenous preparations of the membrane-type omega 6 and omega 3 fatty acid desaturases from the fungus Mortierella alpina, as a model system to produce PUFAs. These desaturases possess a di-iron metal center and are selective for 18:1 n-9 and 18:2 n-6 acyl-CoA substrates, respectively. Sequence alignments and membrane topology predictions support that these enzymes have unique cap regions that may include the rearrangement and repositioning of the active site, especially when compared to the mammalian stearoyl-coenzyme A desaturase-1 (SCD1) and the related sphingolipid alpha-hydroxylase (Scs7p) that act upon different substrates.
Keywords:Fatty acid desaturase;Polyunsaturated fatty acid (PUFA);Enzyme purification;Enzyme kinetics;Regioselectivity;Lipid