화학공학소재연구정보센터
Advanced Powder Technology, Vol.28, No.12, 3233-3240, 2017
Fly ash cenospheres as multifunctional supports of g-C3N4/N-TiO2 with enhanced visible-light photocatalytic activity and adsorption
The ternary composites of g-C3N4/N-TiO2/FACs (FAC: Fly Ash Cenospheres) were synthesized by an in-situ hydrolysis method to improve the photocatalytic activity and their stability. When TiO2 was anchored on FAC, it was easily to be separated from the aqueous solution and could be repeatedly utilized. In the present experiments, the degradation rate remained for more than 68% even after the composite reused for seven times. The band gap of g-C3N4/N-TiO2/FAC was 2.75 eV, which might be owing to the synergistic effect between N-TiO2 and g-C3N4. The composite of g-C3N4/N-TiO2/FAC had an ideal activity of 72.2% under visible light illumination for 180 min. It was about 1.3 times of N-TiO2/FAC and 3.5 times of g-C3N4. The synergistic effect of SiO2, Fe2O3 and TiO2 components resulted to the improvement of photocatalytic performance. (C) 2017 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.