Korean Chemical Engineering Research, Vol.56, No.1, 96-102, February, 2018
염기성 염료 Basic Blue 3에 대한 야자계 입상활성탄의 흡착 특성
Adsorption Characteristics of Coconut Shell-based Granular Activated Carbon on a Basic Dye Basic Blue 3
E-mail:
초록
본 연구에서는 Basic Blue 3 (BB3)에 대한 야자계 입상활성탄의 흡착특성을 평가하였다. 입상활성탄의 투여량이 증가함에 따라 BB3의 제거율은 증가하는 경향을 보였고, 0.2 g 투여량에서 초기농도 50 mg/L의 BB3가 완전히 제거되 었다. 흡착평형은 초기농도 25 mg/L와 50 mg/L에서 각각 270분과 420분이 소요되었으며, 실험데이터는 유사 2차 속도식으로 잘 묘사되었다. Langmuir 식에서 예측된 최대흡착량은 298, 308, 318 K에서 34.45, 46.63, 53.10 mg/g으로 온도가 증가할수록 증가하였다. 또한, Gibbs 자유에너지 변화(ΔG)는 온도 증가에 따라 -7.37, -8.19, -10.40 kJ/mol으로 변화하였고, 엔탈피 변화(ΔH) 및 엔트로피 변화(ΔS)는 34.47 kJ/mol과 0.15 J/mol K로 계산되었다. 따라서 야자계 입상활성탄에 의한 BB3 흡착은 자발적이고 흡열적이었다.
In this study, adsorption characteristics of coconut shell-based granular activated carbon (CS-GAC) on Basic Blue 3 (BB3) were evaluated. As the dosage of CS-GAC increased, the removal efficiency of BB3 tended to increase and the initial dye concentration of 50 mg/L was completely removed at 0.2 g dosage. Adsorption equilibrium achieved within 270 and 420 min at the initial concentrations of 25 and 50 mg/L, respectively, and the experimental data were represented by the pseudo-second-order model. The maximum uptakes (qmax) predicted by the Langmuir model were 34.45, 46.63 and 53.10 mg/g at 298, 308 and 318 K, respectively. The qmax value increased as the temperature increased. Also, the Gibbs free energy (ΔG) was changed to -7.37, -8.19 and -10.40 kJ/mol with increasing temperature. The enthalpy change (ΔH) and the entropy change (ΔS) were 34.47 kJ/mol and 0.15 J/mol K, respectively. Therefore adsorption of BB3 by CS-GAC was spontaneous and endothermic.
- Gupta VK, Suhas J, J. Environ. Manage., 90, 2313 (2009)
- Novotny C, Dias N, Kapanen A, Malachova K, Vandrovcova M, Itavaara M, Lima N, Chemosphere, 63, 1436 (2006)
- Wawrzkiewicz M, Chem. Eng. J., 217, 414 (2013)
- Marungrueng K, Pavasant P, J. Environ. Manage., 78, 268 (2006)
- Tan IAW, Hameed BH, Ahmad AL, Chem. Eng. J., 127(1-3), 111 (2007)
- Aksu Z, Process Biochem., 40(3-4), 997 (2005)
- Robinson T, McMullan G, Marchant R, Nigam P, Bioresour. Technol., 77(3), 247 (2001)
- Ismadji S, Sudaryanto Y, Hartono SB, Setiawan LEK, Ayucitra A, Bioresour. Technol., 96(12), 1364 (2005)
- Lee JJ, Korean Chem. Eng. Res., 54, 225 (2016)
- Lee JJ, Korean Chem. Eng. Res., 53, 1 (2015)
- Aljeboree AM, Alshirifi AN, Alkaim AF, Arab. J. Chem., 10, S3381 (2017)
- Djilani C, Zaghdoudi R, Djazi F, Bouchekima B, Lallam A, Modarressi A, Rogalski M, J. Taiwan Inst. Chem. Eng., 53, 112 (2015)
- Porselvi E, Krishnamoorthy P, J. Mater. Environ. Sci., 5, 408 (2014)
- Hameed KS, Muthirulan P, Sundaram MM, Arab. J. Chem., 10, S2225 (2017)
- Tan IAW, Ahmad AL, Hameed BH, Desalination, 225(1-3), 13 (2008)
- Zogorski JS, Faust SD, Haas JH, J. Colloid Interface Sci., 55, 329 (1976)
- Basibuyuk M, Forster CF, Process Biochem., 38(9), 1311 (2003)
- Chu HC, Chen KM, Process Biochem., 37(6), 595 (2002)
- Shi Y, Kong XZ, Zhang CM, Chen YM, Hua YF, Chem. Eng. J., 215, 113 (2013)
- Dural MU, Cavas L, Papageorgiou SK, Katsaros FK, Chem. Eng. J., 168(1), 77 (2011)
- Zhang J, Li Y, Zhang C, Jing Y, J. Hazard. Mater., 150, 774 (2008)
- Kim SY, Jin MR, Chung CH, Yun YS, Jahng KY, Yu KY, Environ. Sci. Technol., 119, 443 (2015)
- Han Y, Kim H, Park J, Chem. Eng. J., 210, 482 (2012)
- Ma LW, Chen BZ, Chen Y, Shi XC, Micro. Meso. Mater., 142, 147 (2011)
- Wong SY, Tan YP, Abdullah AH, Ong ST, J. Physical Science, 20, 29 (2009)
- Lee JJ, Appl. Chem. Eng., 27(2), 199 (2016)
- Dogan M, Alkan M, Demirbas O, Ozdemir Y, Ozmetin C, Chem. Eng. J., 124(1-3), 89 (2006)
- Ghaedi M, Hossainian H, Montazerozohori M, Shokrollahi A, Shojaipour F, Soylak M, Purkait MK, Desalination, 281, 226 (2011)
- Ryoo KS, Hong YP, Ahn CJ, J. Korean Chem. Soc, 56, 692 (2012)
- Sivakumar P, Palanisamy PN, Int. J. ChemTech Research, 1, 502 (2009)
- Lee JJ, Korean Chem. Eng. Res., 55(4), 514 (2017)
- Sulak MT, Demirbas E, Kobya M, Bioresour. Technol., 98(13), 2590 (2007)
- Hasani S, Ardejani FD, Olya ME, Korean J. Chem. Eng., 34(8), 2265 (2017)