화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.1, 99-105, January, 2018
폴리락틱산/칼슘포스페이트 졸을 이용한 골조직 재생용 복합 마이크로섬유의 제조
Fabrication of Composite Microfibers Using Polylactic Acid/Calcium Phosphate Sol for Bone Tissue Regeneration
E-mail:
초록
골조직 재생용 지지체는 세포의 부착과 3차원적인 조직재생을 유도하기 위해서 인공적인 세포외기질 (extracellular matrix, ECM)로서 기능을 하도록 만들어져야 한다. 따라서 본 연구에서는 폴리락틱산(polylactic acid,PLA)과 칼슘포스페이트(calcium phosphate, CaP) 졸을 이용하여 전기방사법과 열처리 방법으로 복합 마이크로섬유 지지체를 제조하였다. 제조된 복합 마이크로섬유는 3차원 네트워크 구조의 상호연결된 기공구조를 가지고 있었으며, 자연 상태 골조직의 ECM과 유사한 구조를 가지고 있었다. 복합 마이크로섬유에 도입된 CaP의 양이 많아질수록 섬유의 직경은 약간 줄어들었지만 물접촉각은 많이 낮아지는 것이 확인되었다. 복합 마이크로섬유의 조골세포 성장 및 분화에 미치는 영향을 조사한 결과 CaP의 도입량이 가장 많은 PLCP15에서 조골세포의 성장이 가장 촉진되었고, 또한 분화능도 가장 향상되었다는 것을 확인하였다.
The scaffolds for bone tissue regeneration are designed to function as an artificial extracellular matrix (ECM) to temporarily support cell attachment and guide three-dimensional tissue formation. In this study, composite microfiber scaffolds were prepared by electrospinning from polylactic acid (PLA)-calcium phosphate (CaP) sol blend solutions with various concentrations of CaP sol. The resulting composite microfibers exhibited three-dimensionally interconnected microporous structures, which mimicked the natural bone ECM. Although the average diameter of fibers was slightly decreased by the addition of CaP sol, the contact angles were markedly reduced from 107o to 70o. The results of cell viability tests demonstrated that PLCP15 containing 15 wt% of CaP promoted more rapid MC3T3-E1 proliferation compared with other composite microfibers. Moreover, PLCP15 effectively upregulated osteoblastic differentiation.
  1. Amrita, Arora A, Sharma P, Katti DS, Carbohydr. Polym., 123, 180 (2015)
  2. Zhang H, Fu QW, Sun TW, Chen F, Qi C, Wu J, Cai ZY, Qian QR, Zhu YJ, Colloids Surf. B: Biointerfaces, 136, 27 (2015)
  3. Liu X, Smith LA, Hu J, Ma PX, Biomaterials, 30, 2252 (2009)
  4. Whited BM, Whitney JR, Hofmann MC, Xu Y, Rylander MN, Biomaterials, 32, 2294 (2011)
  5. Raucci MG, Guarino V, Ambrosio L, Compos. Sci. Technol., 70, 1861 (2010)
  6. Prabhakaran MP, Venugopal J, Ramakrishna S, Acta Biomater, 5, 2884 (2009)
  7. Mata A, Geng Y, Henrikson KJ, Aparicio C, Stock SR, Satcher RL, Stupp SI, Biomaterials, 31, 6004 (2010)
  8. Dhand C, Ong ST, Dwivedi N, Diaz SM, Venugopal JR, Navaneethan B, Fazil MHUT, Liu S, Seitz V, Wintermantel E, Beuerman RW, Ramakrishna S, Verma NK, Lakshminarayanan R, Biomaterials, 104, 323 (2016)
  9. Seo DE, Jeong SI, Park JS, Gwon HJ, An SJ, Lee BH, Im DS, Shin H, Lim YM, Polym. Korea, 41(1), 143 (2017)
  10. Kokubo T, Biomaterials, 12, 155 (1999)
  11. Unnithan AR, Barakat NAM, Pichiah PBT, Gnanasekaran G, Nirmala R, Cha YS, Jung CH, El-Newehy M, Kim HY, Carbohydr. Polym., 90, 1786 (2012)
  12. Ma Z, Chen F, Zhu YJ, Cui T, Liu XY, J. Colloid Interface Sci., 359(2), 371 (2011)
  13. Ye F, Guo H, Zhang H, He X, Acta Biomater, 6, 2212 (2010)
  14. Wei JH, Yoshinari M, Takemoto S, Hattori M, Kawada E, Liu BL, Oda Y, J. Biomed. Mater. Res., 81B, 66 (2007)
  15. Yang FY, Both SK, Yang X, Walboomers XF, Jansen JA, Acta Biomater., 5, 3295 (2009)
  16. Fujimura K, Okada M, Takeda S, Matsumoto N, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 35, 259 (2014)