Polymer(Korea), Vol.42, No.1, 41-51, January, 2018
유기화 몬모릴로나이트를 사용한 열방성 액정 고분자 나노 복합체의 물성 비교
Comparison of the Properties of Thermotropic Liquid Crystalline Polymer Nanocomposites with Organically Modified Montmorillonites
E-mail:
초록
4-(4-acetoxy-1,4-phenyleneoxytetramethyleneoxy)benzoic acid와 유기화 점토를 사용하여 in-situ 삽입 중합법(in-situ intercalation polymerization)을 통해 열방성 액정고분자(thermotropic liquid crystalline polymer, TLCP) 나노 복합체를 합성하였다. Ethyl-4-aminobenzoate(EAB) 암모늄 염 용액과 나트륨 양이온 몬모릴로나이트(Na+-MMT)와 의 양이온 교환 반응을 통해 유기화 점토(EAB-MMT)를 제조하였다. 유기화 점토인 EAB-MMT와 Cloisite® 30B를 이용하여 TLCP 복합체를 만들었으며, 두 가지 유기화 점토를 사용하여 만든 TLCP 나노 복합체의 열적 특성, 모폴로지 및 액정상을 서로 비교하였다. 단지 소량의 유기화 점토를 사용하여 TLCP 복합체의 열적 특성을 향상시켰으
며, 낮은 유기화 점토 함량(1-9 wt%)을 넣은 TLCP가 순수한 TLCP보다 더 높은 유리 전이 온도(T
g), 녹음 전이 온도(Tm) 및 초기 열 분해 온도(TDi) 값을 보였다. 열적 특성에 관해서는 EAB-MMT가 Cloisite® 30B보다 더 효과적이 었다. 고분자 사슬이 삽입된 점토는 넓은 각 X-선 회절도(X-ray diffraction, XRD)와 투과 전자 현미경(transmission electron microscopy, TEM)을 통해 관찰하였다.
A thermotropic liquid crystalline polymer (TLCP) nanocomposite was synthesized via in-situ intercalation polymerization of 4-(4-acetoxy-1,4-phenyleneoxytetramethyleneoxy)benzoic acid, which was newly synthesized in the presence of organoclay. Organoclay was prepared by the cation exchange reaction of sodium-montmorillonite (Na+- MMT) with a solution of the ammonium salt of ethyl-4-aminobenzoate (EAB). Ethyl-4-aminobenzoate-montmorillonite (EAB-MMT) and Cloisite® 30B were used in the formation of TLCP hybrids. The thermal properties, morphologies, and liquid crystalline phases of TLCP hybrids with two different organoclays were compared. The addition of only a small amount of organoclay was sufficient to improve the thermal properties of the TLCP hybrids. Even polymers with low organoclay content (1-9 wt%) were found to exhibit much higher glass transition temperature (Tg), melt transition temperature (Tm), and initial decomposition temperature (TDi) values than those of pure TLCP. The addition of EAB-MMT was more effective than that of Cloisite® 30B in improving the thermal properties. The intercalation of the polymer chains in the clays was examined by wide-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM).
Keywords:thermotropic liquid crystalline polymer;organoclay;nanocomposite;thermal property;morphology
- Iqbal M, Dingemans TJ, Compos. Sci. Technol., 71, 863 (2011)
- Chen BK, Tsay SY, Chen JY, Polymer, 46(20), 8624 (2005)
- Guerriero G, Alderliesten R, Dingemans T, Benedictus R, Prog. Org. Coat., 70, 245 (2011)
- Rendon S, Burghardt WR, Bubeck RA, Thomas LS, Hart B, Polymer, 46(23), 10202 (2005)
- Bagheri M, Rad RZ, React. Funct. Polym., 68(2), 613 (2008)
- Tang YH, Gao P, Ye L, Zhao CB, Polymer, 51(2), 514 (2010)
- Iqbal M, Dingemans TJ, Eur. Polym. J., 46, 2174 (2010)
- Rath T, Kummer S, Mahaling RN, Khatua BB, Das CK, Yadaw SB, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 490, 198 (2008)
- Ming Z, Chang DH, Macromoecules, 38, 9602 (2005)
- Yu XB, Wei C, Xu D, Lu CH, Yu JH, Lu SR, J. Appl. Polym. Sci., 103(6), 3899 (2007)
- Ren CY, Gao P, Polymer, 53(18), 3958 (2012)
- Severing K, Fischer ES, Hasenhindl A, Finkelmann H, Saalwachter K, J. Phys. Chem., 110, 15680 (2006)
- Bose S, Pramanik N, Das CK, Ranjan A, Saxena AK, Mater. Des., 31, 1148 (2010)
- Chung T, Plast. Eng., 43, 39 (1987)
- Weiss RA, Huh W, Nicolais L, Polym. Eng. Sci., 27, 664 (1987)
- Kotliar AM, J. Polym. Sci., Macromol. Rev., 16, 367 (1981).
- Devaux J, Godard P, Mercier JP, Polym. Eng. Sci., 22, 229 (1982)
- Porter RS, Jonza JM, Kimura M, Desper CR, George ER, Polym. Eng. Sci., 29, 55 (1989)
- Whitesides GM, Mathias TP, Seto CT, Science, 254, 1312 (1991)
- GLEITER H, Adv. Mater., 4(7-8), 474 (1992)
- NOVAK BM, Adv. Mater., 5(6), 422 (1993)
- LeBaron PC, Wang Z, Pinnavaia TJ, Appl. Clay Sci., 15, 11 (1999)
- Hwang SH, Paeng SW, Kim JY, Huh W, Lee SW, Polym. Bull., 49(5), 329 (2003)
- Wang D, Zhu J, Yao Q, Wilkie CA, Chem. Mater., 14, 3837 (2002)
- Giannelis EP, Adv. Mater., 8(1), 29 (1996)
- Lagaly G, Appl. Clay Sci., 15, 1 (1999)
- Gilman JW, Appl. Clay Sci., 15, 31 (1999)
- Wang Z, Lan T, Pinnavaia TJ, Chem. Mater., 8, 220 (1996)
- Jaynes WF, Bigham JM, Clay Clay Min., 35, 440 (1987)
- Kawasaki K, Ebina T, Mizukami F, Tsuda H, Motegi K, Appl. Clay Sci., 48, 111 (2010)
- Jung MH, Kim JC, Chang JH, Polym. Korea, 31(5), 428 (2007)
- Ham M, Kim JC, Chang JH, Polym. Korea, 37(2), 225 (2013)
- Chang JH, Ham M, Kim JC, J. Nanosci. Nanotechnol., 14, 8783 (2014)
- Morgan AB, Gilman JW, J. Appl. Polym. Sci., 87(8), 1329 (2003)
- Galgali G, Ramesh C, Lele A, Macromolecules, 34(4), 852 (2001)
- Noh MW, Lee DC, Polym. Bull., 42(5), 619 (1999)
- Hsu SLC, Chang KC, Polymer, 43(15), 4097 (2002)
- Chang JH, Seo BS, Hwang DH, Polymer, 43(10), 2969 (2002)
- Vendamme R, Onoue SY, Nakao A, Kunitake T, Nat. Mater., 5(6), 494 (2006)
- Haraguchi K, Ebato M, Takehisa T, Adv. Mater., 18(17), 2250 (2006)
- Fornes TD, Yoon PJ, Hunter DL, Keskkula H, Paul DR, Polymer, 43(22), 5915 (2002)
- Petrovic ZS, Javni I, Waddon A, Banhegyi G, J. Appl. Polym. Sci., 76(2), 133 (2000)
- Wang Z, Lan T, Pinnavaia TJ, Chem. Mater., 8, 220 (1996)
- Akelah A, Moet A, J. Mater. Sci., 31(13), 3589 (1996)
- Giannelis EP, Appl. Organomet. Chem., 12, 675 (1998)
- Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O, J. Polym. Sci. A: Polym. Chem., 31, 1755 (1993)
- Chang JH, Ju CH, Kim SH, J. Polym. Sci. B: Polym. Phys., 44(2), 387 (2006)
- Park DK, Chang JH, Polym. Korea, 24(3), 399 (2000)
- Vaia RA, Giannelis EP, Polymer, 42(3), 1281 (2001)
- Ahn YH, Chang JH, Polym. Adv. Technol., 19, 1479 (2008)
- Min U, Chang JH, Mater. Chem. Phys., 129(1-2), 517 (2011)