화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.1, 41-51, January, 2018
유기화 몬모릴로나이트를 사용한 열방성 액정 고분자 나노 복합체의 물성 비교
Comparison of the Properties of Thermotropic Liquid Crystalline Polymer Nanocomposites with Organically Modified Montmorillonites
E-mail:
초록
4-(4-acetoxy-1,4-phenyleneoxytetramethyleneoxy)benzoic acid와 유기화 점토를 사용하여 in-situ 삽입 중합법(in-situ intercalation polymerization)을 통해 열방성 액정고분자(thermotropic liquid crystalline polymer, TLCP) 나노 복합체를 합성하였다. Ethyl-4-aminobenzoate(EAB) 암모늄 염 용액과 나트륨 양이온 몬모릴로나이트(Na+-MMT)와 의 양이온 교환 반응을 통해 유기화 점토(EAB-MMT)를 제조하였다. 유기화 점토인 EAB-MMT와 Cloisite® 30B를 이용하여 TLCP 복합체를 만들었으며, 두 가지 유기화 점토를 사용하여 만든 TLCP 나노 복합체의 열적 특성, 모폴로지 및 액정상을 서로 비교하였다. 단지 소량의 유기화 점토를 사용하여 TLCP 복합체의 열적 특성을 향상시켰으 며, 낮은 유기화 점토 함량(1-9 wt%)을 넣은 TLCP가 순수한 TLCP보다 더 높은 유리 전이 온도(T g), 녹음 전이 온도(Tm) 및 초기 열 분해 온도(TDi) 값을 보였다. 열적 특성에 관해서는 EAB-MMT가 Cloisite® 30B보다 더 효과적이 었다. 고분자 사슬이 삽입된 점토는 넓은 각 X-선 회절도(X-ray diffraction, XRD)와 투과 전자 현미경(transmission electron microscopy, TEM)을 통해 관찰하였다.
A thermotropic liquid crystalline polymer (TLCP) nanocomposite was synthesized via in-situ intercalation polymerization of 4-(4-acetoxy-1,4-phenyleneoxytetramethyleneoxy)benzoic acid, which was newly synthesized in the presence of organoclay. Organoclay was prepared by the cation exchange reaction of sodium-montmorillonite (Na+- MMT) with a solution of the ammonium salt of ethyl-4-aminobenzoate (EAB). Ethyl-4-aminobenzoate-montmorillonite (EAB-MMT) and Cloisite® 30B were used in the formation of TLCP hybrids. The thermal properties, morphologies, and liquid crystalline phases of TLCP hybrids with two different organoclays were compared. The addition of only a small amount of organoclay was sufficient to improve the thermal properties of the TLCP hybrids. Even polymers with low organoclay content (1-9 wt%) were found to exhibit much higher glass transition temperature (Tg), melt transition temperature (Tm), and initial decomposition temperature (TDi) values than those of pure TLCP. The addition of EAB-MMT was more effective than that of Cloisite® 30B in improving the thermal properties. The intercalation of the polymer chains in the clays was examined by wide-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM).
  1. Iqbal M, Dingemans TJ, Compos. Sci. Technol., 71, 863 (2011)
  2. Chen BK, Tsay SY, Chen JY, Polymer, 46(20), 8624 (2005)
  3. Guerriero G, Alderliesten R, Dingemans T, Benedictus R, Prog. Org. Coat., 70, 245 (2011)
  4. Rendon S, Burghardt WR, Bubeck RA, Thomas LS, Hart B, Polymer, 46(23), 10202 (2005)
  5. Bagheri M, Rad RZ, React. Funct. Polym., 68(2), 613 (2008)
  6. Tang YH, Gao P, Ye L, Zhao CB, Polymer, 51(2), 514 (2010)
  7. Iqbal M, Dingemans TJ, Eur. Polym. J., 46, 2174 (2010)
  8. Rath T, Kummer S, Mahaling RN, Khatua BB, Das CK, Yadaw SB, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 490, 198 (2008)
  9. Ming Z, Chang DH, Macromoecules, 38, 9602 (2005)
  10. Yu XB, Wei C, Xu D, Lu CH, Yu JH, Lu SR, J. Appl. Polym. Sci., 103(6), 3899 (2007)
  11. Ren CY, Gao P, Polymer, 53(18), 3958 (2012)
  12. Severing K, Fischer ES, Hasenhindl A, Finkelmann H, Saalwachter K, J. Phys. Chem., 110, 15680 (2006)
  13. Bose S, Pramanik N, Das CK, Ranjan A, Saxena AK, Mater. Des., 31, 1148 (2010)
  14. Chung T, Plast. Eng., 43, 39 (1987)
  15. Weiss RA, Huh W, Nicolais L, Polym. Eng. Sci., 27, 664 (1987)
  16. Kotliar AM, J. Polym. Sci., Macromol. Rev., 16, 367 (1981).
  17. Devaux J, Godard P, Mercier JP, Polym. Eng. Sci., 22, 229 (1982)
  18. Porter RS, Jonza JM, Kimura M, Desper CR, George ER, Polym. Eng. Sci., 29, 55 (1989)
  19. Whitesides GM, Mathias TP, Seto CT, Science, 254, 1312 (1991)
  20. GLEITER H, Adv. Mater., 4(7-8), 474 (1992)
  21. NOVAK BM, Adv. Mater., 5(6), 422 (1993)
  22. LeBaron PC, Wang Z, Pinnavaia TJ, Appl. Clay Sci., 15, 11 (1999)
  23. Hwang SH, Paeng SW, Kim JY, Huh W, Lee SW, Polym. Bull., 49(5), 329 (2003)
  24. Wang D, Zhu J, Yao Q, Wilkie CA, Chem. Mater., 14, 3837 (2002)
  25. Giannelis EP, Adv. Mater., 8(1), 29 (1996)
  26. Lagaly G, Appl. Clay Sci., 15, 1 (1999)
  27. Gilman JW, Appl. Clay Sci., 15, 31 (1999)
  28. Wang Z, Lan T, Pinnavaia TJ, Chem. Mater., 8, 220 (1996)
  29. Jaynes WF, Bigham JM, Clay Clay Min., 35, 440 (1987)
  30. Kawasaki K, Ebina T, Mizukami F, Tsuda H, Motegi K, Appl. Clay Sci., 48, 111 (2010)
  31. Jung MH, Kim JC, Chang JH, Polym. Korea, 31(5), 428 (2007)
  32. Ham M, Kim JC, Chang JH, Polym. Korea, 37(2), 225 (2013)
  33. Chang JH, Ham M, Kim JC, J. Nanosci. Nanotechnol., 14, 8783 (2014)
  34. Morgan AB, Gilman JW, J. Appl. Polym. Sci., 87(8), 1329 (2003)
  35. Galgali G, Ramesh C, Lele A, Macromolecules, 34(4), 852 (2001)
  36. Noh MW, Lee DC, Polym. Bull., 42(5), 619 (1999)
  37. Hsu SLC, Chang KC, Polymer, 43(15), 4097 (2002)
  38. Chang JH, Seo BS, Hwang DH, Polymer, 43(10), 2969 (2002)
  39. Vendamme R, Onoue SY, Nakao A, Kunitake T, Nat. Mater., 5(6), 494 (2006)
  40. Haraguchi K, Ebato M, Takehisa T, Adv. Mater., 18(17), 2250 (2006)
  41. Fornes TD, Yoon PJ, Hunter DL, Keskkula H, Paul DR, Polymer, 43(22), 5915 (2002)
  42. Petrovic ZS, Javni I, Waddon A, Banhegyi G, J. Appl. Polym. Sci., 76(2), 133 (2000)
  43. Wang Z, Lan T, Pinnavaia TJ, Chem. Mater., 8, 220 (1996)
  44. Akelah A, Moet A, J. Mater. Sci., 31(13), 3589 (1996)
  45. Giannelis EP, Appl. Organomet. Chem., 12, 675 (1998)
  46. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O, J. Polym. Sci. A: Polym. Chem., 31, 1755 (1993)
  47. Chang JH, Ju CH, Kim SH, J. Polym. Sci. B: Polym. Phys., 44(2), 387 (2006)
  48. Park DK, Chang JH, Polym. Korea, 24(3), 399 (2000)
  49. Vaia RA, Giannelis EP, Polymer, 42(3), 1281 (2001)
  50. Ahn YH, Chang JH, Polym. Adv. Technol., 19, 1479 (2008)
  51. Min U, Chang JH, Mater. Chem. Phys., 129(1-2), 517 (2011)