Clean Technology, Vol.23, No.4, 435-440, December, 2017
갈조류 급속열분해 공정의 모사와 설계
Process Design and Simulation of Fast Pyrolysis of Brown Seaweed
E-mail:
초록
바이오 연료 생산을 위한 3세대 바이오매스, 즉 미세조류 및 거대조류의 급속 열분해는 최근 1 세대 및 2 세대 바이오매스와 비교하여 실험적으로 연구된 바 있다. 하지만 거대조류의 경우 스케일업을 위한 공정모사 및 공정설계 연구는 거의 전무한 실정이다. 이 연구에서는 갈조류 급속 열분해의 벤치 스케일 실험 데이터에 근거하여 갈조류로부터 최종적으로 디젤을 생산하는 산업 규모의 공정을 상용 공정모사기를 이용하여 설계하고 모사하였다. 이때 육상 바이오매스 대비 갈조류의 조성차이를 수용하기 위해 공정 설계에 특별한 주의를 기울였다. 연간 380,000톤의 건조 갈조류 원료를 바이오 디젤로 전환하는 전체 공정을 경제적으로 평가하고 최소 (디젤) 판매 가격 또한 산정하였다.
Fast pyrolysis of third generation biomass, including micro- and macroalgae for biofuel production has recently been studied and compared experimentally to first- and second-generation biomass. Compared to microalgae, however, process design and simulation study of macroalgae for scale-up has been rare in literature. In this study, we designed and simulated an industrial scale process for producing diesel range biofuel from brown algae based on bench scale experimental data of fast pyrolysis using a commercial process simulator. During process design, special attention was paid to the process design to accommodate the differences in composition of brown algae compared to terrestrial biomass. The entire process of converting 380,000 tonnes of dry brown algae per year into diesel range biofuel was economically evaluated and the minimum (diesel) selling price was also estimated through techno-economic analysis.
- Owen NA, Inderwildi OR, King DA, Energy Policy, 38(8), 4743 (2010)
- Rowbotham JS, Dyer PW, Greenwell HC, Theodorou MK, Biofuels, 3, 441 (2012)
- Giampietro M, Mayumi K, Routledge, London, 69-104 (2009).
- MacKay DJC, Sustainable Energy - without the Hot Air, UIT Cambridge (2009).
- Mitchell D, World Bank, Washington, DC. Policy Research Working Paper No. 4682. (2008).
- Gao K, McKinley KR, J. Appl. Phycol., 6, 45 (1994)
- Adams JMM, Ross AB, Anastasakis K, Hodgson EM, Gallagher JA, Jones JM, Donnison IS, Bioresour. Technol., 102(1), 226 (2011)
- Suutari M, Leskinen E, Fagerstedt K, Kuparinen J, Kuuppo P, Blomster J, Phycol. Res., 63, 1 (2015)
- Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y, Pacific Northwest National Laboratory (PNNL), Richland, WA, Report No. PNNL-19944 (2010).
- Milledge JJ, Smith B, Dyer PW, Harvey P, Energy, 7, 7194 (2014)
- Ross AB, Jones JM, Kubacki ML, Bridgeman T, Bioresour. Technol., 99(14), 6494 (2008)
- Li DM, Chen LM, Yi XJ, Zhang XW, Ye NH, Bioresour. Technol., 101(18), 7131 (2010)
- Wang J, Wang G, Zhang MX, Chen MQ, Li DM, Min FF, Chen MG, Zhang SP, Ren ZW, Yan YJ, Process Biochem., 41(8), 1883 (2006)
- Goyal HB, Diptendu S, Saxena RC, Renew. Sust. Energ. Rev., 12, 504 (2008)
- Rutz D, Rainer J, Biofuel Technology Handbook, WIP Renewable energies (2007).
- Luque R, James C, eds. Handbook of Biofuels Production: Processes and Technologies, Elsevier (2010).
- Haveren J, Elinor LS, Johan S, Biofuel. Bioprod. Bior., 2, 41 (2008)
- Vispute TP, Zhang HY, Sanna A, Xiao R, Huber GW, Science, 330(6008), 1222 (2010)
- Choi JH, Pukyong National University, Busan (2015).
- Turton R, Bailie RC, Whiting WB, Shaeiwitz JA, 3rd ed. Prentice Hall, New York, 163-198 (2008).
- Jones SB, Meyer PA, Snowden-Swan LJ, Padmaperuma AB, Tan E, Dutta A, Jacobson J, Cafferty K, NREL/TP-5100-61178. Pacific Northwest National Laboratory (PNNL), Report No. PNNL-23053 (2013).