화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.1, 298-302, January, 2018
Enhancement of thermal stability and chemical reactivity of phenolic resin ameliorated by nanoSiO2
E-mail:
Phenolic resin has unsatisfactory thermal stability owing to the poor anti-oxidation property of methylene and phenol groups. To overcome this defect, a series of phenolic resin modified by nanoSiO2 based on the tetraethoxysilane (TEOS) was successfully prepared via sol-gel method using phenol as solvent. The effect of nanoSiO2 on the structures and properties of phenolic resin/foam was investigated. TGA and DTG indicated that the initial decomposition temperature of PR-0.5 (TEOS accounted for 0.5% of phenolic resin) was 41.8 °C higher than the neat PR-0. DSC revealed that the peak temperature presented a parabolic shape with the dosage of the TEOS, its maximal value resting on the PR-0.5. FT-IR and XRD demonstrated that chemical crosslink was reacted between PR and nanoSiO2 hydrolyzed by the TEOS, forming new chemical bands. Reactivity analysis illustrated that the free phenol content and the hydroxymethyl group content changed sharply in PF-0.5, implying it has highest reactivity.
  1. Li XY, Wang ZZ, Wu LX, RSC Adv., 5, 99907 (2015)
  2. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Nano Lett., 8, 902 (2008)
  3. Zhao YH, Wu ZK, Bai SL, Compos. Pt. A-Appl. Sci. Manuf., 72, 200 (2015)
  4. Zhao L, Sun X, Lei Z, Zhao J, Wu J, Li Q, Compos. Part B-Eng., 83, 317 (2015)
  5. Cheng H, Xue H, Hong C, Zhang X, Compos. Sci. Technol., 140, 63 (2017)
  6. Song SA, Yong SC, Kim SS, Compos. Sci. Technol., 103, 85 (2014)
  7. Zhao YH, Zhang YF, Bai SL, Yuan XW, Compos. Part B-Eng., 94, 102 (2016)
  8. Li S, Chen F, Zhang B, Luo Z, Li H, Zhao T, Polym. Degrad. Stabil., 133, 321 (2016)
  9. Li H, Yao D, Fu Q, Liu L, Zhang Y, Yao X, Carbon, 52, 418 (2013)
  10. Kobera L, Czernek J, Streckova M, Urbanova M, Abbrent S, Brus J, Macromolecules, 48(14), 4874 (2015)
  11. Lin CT, Lee HT, Chen JK, Appl. Surf. Sci., 330, 1 (2015)
  12. Wang S, Jing X, Wang Y, Si J, Polym. Degrad. Stabil., 99, 1 (2014)
  13. Feng J, Chen L, Gu J, He Z, Yun J, Wang X, J. Polym. Res., 23, 1 (2016)
  14. Sui X, Wang Z, Polym. Adv. Technol., 24, 593 (2013)
  15. Zhang G, Shi M, Huang C, Huang Z, J. Macromol. Sci. B., 55, 810 (2016)
  16. Li C, Wan J, Pan YT, Zhao PC, Fan H, Wang DY, ACS Sustain. Chem. Eng., 4, 3113 (2016)
  17. Brus J, Spirkova M, Hlavata D, Strachota A, Macromolecules, 37(4), 1346 (2004)
  18. Schutz MR, Sattler K, Deeken S, Klein O, Adasch V, Liebscher CH, Glatzel U, Senker J, Breu J, J. Appl. Polym. Sci., 117(4), 2272 (2010)
  19. Roumeli E, Papadopoulou E, Pavlidou E, Vourlias G, Bikiaris D, Paraskevopoulos KM, Chrissafis K, Thermochim. Acta, 527, 33 (2012)
  20. Lin Q, Yang G, Liu J, Rao J, Frontiers of Forestry in China, 1, 230 (2006)
  21. Li H, Zhang Z, Ma X, Surf. Coat. Technol., 201, 5269 (2007)
  22. Shi H, Liu F, Yang L, Han E, Prog. Org. Coat., 62, 359 (2008)
  23. Gao XY, Zhu YC, Zhao X, Wang ZC, An DM, Ma YJ, Guan SA, Du YY, Zhou B, Appl. Surf. Sci., 257(10), 4719 (2011)
  24. Li S, Han Y, Chen F, Luo Z, Li H, Zhao T, Polym. Degrad. Stabil., 124, 68 (2016)
  25. Li Q, Chen L, Zhang J, Zheng K, Zhang X, Fang F, Polym. Eng. Sci., 55, 2783 (2016)
  26. Periadurai T, Vijayakumar CT, Balasubramanian M, J. Anal. Appl. Pyrolysis, 89, 244 (2010)
  27. Yuan J, Zhang Y, Wang Z, J. Appl. Polym. Sci., 132, 42590 (2015)
  28. Arafa IM, Fares MM, Barham AS, Eur. Polym. J., 40, 1477 (2004)
  29. Kissinger HE, Anal. Chem., 29, 1702 (1957)
  30. Li S, Chen FH, Han Y, Zhou H, Li H, Zhao T, Mater. Chem. Phys., 165, 25 (2015)
  31. Su MR, Wang ZX, Guo HJ, Li XH, Huang SL, Gan L, Adv. Powder Technol., 24(6), 921 (2013)
  32. Ma YF, Wang JF, Xu YZ, Wang CP, Chu FX, J. Therm. Anal. Calorim., 114, 1143 (2013)