Korean Journal of Chemical Engineering, Vol.34, No.12, 3092-3101, December, 2017
A reaction kinetic study of CO2 gasification of petroleum coke, coals and mixture
E-mail:
Characteristics of Char-CO2 gasification were compared in the temperature range of 1,100-1,400
°C using a thermogravimetric analyzer (TGA) for petroleum coke, coal chars and mixed fuels (Petroleum coke/coal ratios: 0, 0.25, 0.5, 0.75, 1). The results showed that reaction time decreased with increasing gasification temperature, BET surface area and alkali index of coal. Mixed fuels composed of petroleum coke/coal exhibited reduced activation energies. Modified volumetric reaction model and shrinking core model might be suitably matched with experimental data depending on coal type and petroleum coke/coal ratio. Rate equations were suggested by selecting gas-solid reaction rate models for each sample that could simulate CO2 gasification behavior.
- Lee SH, Park ST, Lee R, Hwang JH, Sohn JM, Korean J. Chem. Eng., 33(12), 3523 (2016)
- Dupont C, Nocquet T, Da Costa JA, Verne-Tournon C, Bioresour. Technol., 102(20), 9743 (2011)
- Bu CS, Gomez-Barea A, Chen XP, Leckner B, Liu DY, Pallares D, Lu P, Appl. Energy, 177, 247 (2016)
- Roberts DG, Harris DJ, Energy Fuels, 14(2), 483 (2000)
- Zou JH, Zhou ZJ, Wang FC, Zhang W, Dai ZH, Liu HF, Yu ZH, Chem. Eng. Process., 46(7), 630 (2007)
- Edreis EMA, Luo G, Li A, Xu C, Yao H, Energy Convers. Manage., 79, 355 (2014)
- Park JH, Kim JS, Korean Chem. Eng. Res., 54(1), 1 (2016)
- Yoon SJ, Choi YC, Lee SH, Lee JG, Korean J. Chem. Eng., 24(3), 512 (2007)
- Murthy BN, Sawarkar AN, Deshmukh NA, Mathew T, Joshi JB, Can. J. Chem. Eng., 92(3), 441 (2014)
- Fermoso J, Arias B, Plaza MG, Pevida C, Rubiera F, Pis JJ, Garcia-Pena F, Casero P, Fuel Process. Technol., 90(7-8), 926 (2009)
- Lee SH, Yoon SJ, Ra HW, Il Son Y, Hong JC, Lee JG, Energy, 35(8), 3239 (2010)
- Zhao CS, Lin LS, Pang KL, Xiang WG, Chen XP, Fuel Process. Technol., 91(8), 805 (2010)
- Huo W, Zhou ZJ, Chen XL, Dai ZH, Yu GS, Bioresour. Technol., 159, 143 (2014)
- Jayaraman K, Gokalp I, Appl. Therm. Eng., 80, 10 (2015)
- Clements BR, Zhuang Q, Pomalis R, Wong J, Campbell D, Fuel, 97, 315 (2012)
- Edreis EMA, Luo GQ, Li AJ, Chao C, Hu HY, Zhang S, Gui B, Xiao L, Xu K, Zhang PG, Yao H, Bioresour. Technol., 136, 595 (2013)
- Goyal A, Pushpavanam S, Voolapalli RK, Fuel Process. Technol., 91(10), 1296 (2010)
- Gong S, Zhu X, Kim Y, Song B, Yang W, Moon W, Byoun Y, Korean Chem. Eng. Res., 48(1), 80 (2010)
- Timpe RC, Sears RE, Montgomery GG, Prepr. Pap., Am. Chem. Soc., Div. Fuel Chem., 32 (1987).
- Ballal G, Girish N, Amundson R, Chem. Eng. Sci., 44, 1763 (1989)
- Dutta S, Wen CY, Ind. Eng. Chem. Proc. Dev., 16 (1977).
- Nagpal S, Sarkar TK, Sen R, Fuel Process. Technol., 86(6), 617 (2005)
- Zhang LX, Huang JJ, Fang YT, Wang Y, Energy Fuels, 20(3), 1201 (2006)
- Irfan MF, Usman MR, Kusakabe K, Energy, 36(1), 12 (2011)
- Kim SK, Park CY, Park JY, Lee S, Rhu JH, Han MH, Yoon SK, Rhee YW, J. Ind. Eng. Chem., 20(1), 356 (2014)
- Kim SK, Park JY, Lee DK, Hwang SC, Lee SH, Rhee YW, J. Energy Eng., 142 (2015), DOI:10.1061/(ASCE)EY.1943-7897.0000294.