화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.12, 3092-3101, December, 2017
A reaction kinetic study of CO2 gasification of petroleum coke, coals and mixture
E-mail:
Characteristics of Char-CO2 gasification were compared in the temperature range of 1,100-1,400 °C using a thermogravimetric analyzer (TGA) for petroleum coke, coal chars and mixed fuels (Petroleum coke/coal ratios: 0, 0.25, 0.5, 0.75, 1). The results showed that reaction time decreased with increasing gasification temperature, BET surface area and alkali index of coal. Mixed fuels composed of petroleum coke/coal exhibited reduced activation energies. Modified volumetric reaction model and shrinking core model might be suitably matched with experimental data depending on coal type and petroleum coke/coal ratio. Rate equations were suggested by selecting gas-solid reaction rate models for each sample that could simulate CO2 gasification behavior.
  1. Lee SH, Park ST, Lee R, Hwang JH, Sohn JM, Korean J. Chem. Eng., 33(12), 3523 (2016)
  2. Dupont C, Nocquet T, Da Costa JA, Verne-Tournon C, Bioresour. Technol., 102(20), 9743 (2011)
  3. Bu CS, Gomez-Barea A, Chen XP, Leckner B, Liu DY, Pallares D, Lu P, Appl. Energy, 177, 247 (2016)
  4. Roberts DG, Harris DJ, Energy Fuels, 14(2), 483 (2000)
  5. Zou JH, Zhou ZJ, Wang FC, Zhang W, Dai ZH, Liu HF, Yu ZH, Chem. Eng. Process., 46(7), 630 (2007)
  6. Edreis EMA, Luo G, Li A, Xu C, Yao H, Energy Convers. Manage., 79, 355 (2014)
  7. Park JH, Kim JS, Korean Chem. Eng. Res., 54(1), 1 (2016)
  8. Yoon SJ, Choi YC, Lee SH, Lee JG, Korean J. Chem. Eng., 24(3), 512 (2007)
  9. Murthy BN, Sawarkar AN, Deshmukh NA, Mathew T, Joshi JB, Can. J. Chem. Eng., 92(3), 441 (2014)
  10. Fermoso J, Arias B, Plaza MG, Pevida C, Rubiera F, Pis JJ, Garcia-Pena F, Casero P, Fuel Process. Technol., 90(7-8), 926 (2009)
  11. Lee SH, Yoon SJ, Ra HW, Il Son Y, Hong JC, Lee JG, Energy, 35(8), 3239 (2010)
  12. Zhao CS, Lin LS, Pang KL, Xiang WG, Chen XP, Fuel Process. Technol., 91(8), 805 (2010)
  13. Huo W, Zhou ZJ, Chen XL, Dai ZH, Yu GS, Bioresour. Technol., 159, 143 (2014)
  14. Jayaraman K, Gokalp I, Appl. Therm. Eng., 80, 10 (2015)
  15. Clements BR, Zhuang Q, Pomalis R, Wong J, Campbell D, Fuel, 97, 315 (2012)
  16. Edreis EMA, Luo GQ, Li AJ, Chao C, Hu HY, Zhang S, Gui B, Xiao L, Xu K, Zhang PG, Yao H, Bioresour. Technol., 136, 595 (2013)
  17. Goyal A, Pushpavanam S, Voolapalli RK, Fuel Process. Technol., 91(10), 1296 (2010)
  18. Gong S, Zhu X, Kim Y, Song B, Yang W, Moon W, Byoun Y, Korean Chem. Eng. Res., 48(1), 80 (2010)
  19. Timpe RC, Sears RE, Montgomery GG, Prepr. Pap., Am. Chem. Soc., Div. Fuel Chem., 32 (1987).
  20. Ballal G, Girish N, Amundson R, Chem. Eng. Sci., 44, 1763 (1989)
  21. Dutta S, Wen CY, Ind. Eng. Chem. Proc. Dev., 16 (1977).
  22. Nagpal S, Sarkar TK, Sen R, Fuel Process. Technol., 86(6), 617 (2005)
  23. Zhang LX, Huang JJ, Fang YT, Wang Y, Energy Fuels, 20(3), 1201 (2006)
  24. Irfan MF, Usman MR, Kusakabe K, Energy, 36(1), 12 (2011)
  25. Kim SK, Park CY, Park JY, Lee S, Rhu JH, Han MH, Yoon SK, Rhee YW, J. Ind. Eng. Chem., 20(1), 356 (2014)
  26. Kim SK, Park JY, Lee DK, Hwang SC, Lee SH, Rhee YW, J. Energy Eng., 142 (2015), DOI:10.1061/(ASCE)EY.1943-7897.0000294.