화학공학소재연구정보센터
Polymer(Korea), Vol.41, No.6, 1066-1072, November, 2017
블록 공중합체로 표면처리된 탄소섬유가 폴리프로필렌 복합재료의 인장 특성에 미치는 영향 연구
Effects of the Reinforcement of Block Copolymer-treated Carbon Fibers on Tensile Properties of Polypropylene Composites
E-mail:
초록
본 연구에서는 표면에 비스페놀계 에폭시가 사이징된 탄소섬유(CF, carbon fiber)와 폴리프로필렌(PP, polypropylene)과의 계면 접착력을 향상시키기 위하여 양친매성 상용화제로 poly(dimethylaminoethyl methacrylate)-blockpoly(methyl methacrylate) (PDMAEMA-b-PMMA) 공중합체를 reversible-addition fragmentation chain transfer 방법으로 합성하였으며, 이를 CF 표면의 에폭시와 반응시킨 뒤 PP와 용융 혼합을 통하여 복합재료를 제조, 인장 특성을 분석하였다. DMAEMA 단량체의 3급 아민이 에폭시 그룹과 반응하여 탄소섬유 표면이 관능화되는 것을 XPS, TGA 그리고 FE-SEM으로 확인하였으며, 상용화제 처리 CF/PP 복합재료의 인장강도 및 탄성률이 표면처리를 하지않은 복합재료에 비하여 각각 37.8% 그리고 18.7%가 향상되었다. 이것은 CF와 PP간의 계면 접착력이 증가하고 궁극적으로 하중전달 능력이 향상된 것으로 판단할 수 있다. 또한 상용화제로 처리한 CF와 PP 매트릭스와의 계면 접착력 및 상용성이 향상됨을 모폴로지 분석을 통해 확인하였다.
Poly(dimethylaminoethyl methacrylate)-block-poly(methyl methacrylate) (PDMAEMA-b-PMMA) copolymer (BCP) was synthesized as a amphiphilic compatibilizer via reversible-addition fragmentation chain transfer polymerization to improve the interfacial adhesion and compatibility between epoxy sizing of carbon fiber (CF) surface and polypropylene (PP) matrix. The pristine CF (p-CF)/PP and compatibilizer-treated CF (BCP-CF)/PP composites were fabricated using melt mixing and their tensile properties were analyzed. It was confirmed that the CF surface was functionalized with BCP by reaction of tertiary amine in BCP with epoxide group on CF surface through XPS, TGA and FESEM. The tensile strength and modulus of BCP-CF/PP composites were improved by 37.8% and 18.7%, compared to p-CF/PP composites, which could be attributed to the higher interfacial adhesion between CF and PP and thus improved load transfer capability. The enhanced interface adhesion and compatibility of BCP-CF and PP was also examined by morphology observation.
  1. Das S, The cost of automotive polymer composites, U. S. Department of Energy, Oak Ridge, 2001.
  2. Fuchs ERH, Field FR, Roth R, Kirchain RE, Compos. Sci. Technol., 68, 1989 (2008)
  3. Manchado MAL, Valentini L, Biagiotti J, Kenny JM, Carbon, 43, 1499 (2005)
  4. Valentini L, Biagiotti J, Kenny JM, Santucci S, Compos. Sci. Technol., 63, 1149 (2003)
  5. Yang BX, Shi JH, Pramoda KP, Goh SH, Combust. Sci. Technol., 68, 2490 (2008)
  6. Zhang QH, Chen DJ, J. Mater. Sci., 39(5), 1751 (2004)
  7. Wen M, Sun XJ, Su L, Shen JB, Li J, Guo SY, Polymer, 53(7), 1602 (2012)
  8. Kalaizidou K, Fukushima H, Drzal LT, Compos. Pt. A-Appl. Sci. Manuf., 38, 1675 (2007)
  9. Achaby ME, Arrakhiz FE, Vaudreuil S, Qaiss AEK, Bousmina M, Fehri OF, Polym. Compos., 33, 733 (2012)
  10. An JE, Jeon GW, Jeong YG, Fibers and Polymers, 13, 507 (2012)
  11. Xu B, Wang X, Lu Y, Appl. Surf. Sci., 256, 2695 (2006)
  12. Ameli A, Jung PU, Park CB, Carbon, 60, 379 (2013)
  13. Rezaei F, Yunus R, Ibrahim NA, Mater. Des., 30, 260 (2009)
  14. Rezaei F, Yunus R, Ibrahim NA, Mahdi ES, Polym. -Plast. Technol. Eng., 47, 351 (2008)
  15. Fu SY, Lauke B, Mader E, Yue CY, Hu X, Compos. Pt. A-Appl. Sci. Manuf., 31, 1117 (2000)
  16. Seo MK, Park SH, Kang SJ, Park SJ, Carbon Lett., 10, 43 (2009)
  17. Karsli NG, Aytac A, Mater. Des., 32, 4069 (2011)
  18. Yuan H, Wang CG, Zhang S, Lin X, Appl. Surf. Sci., 259, 288 (2012)
  19. Li J, Appl. Surf. Sci., 255(20), 8682 (2009)
  20. Choi MH, Jeon BH, Chung IJ, Polymer, 41(9), 3243 (2000)
  21. Lai JT, Filla D, Shea R, Macromolecules, 35(18), 6754 (2002)
  22. Duemichen E, Javdanitehran M, Erdmann M, Trappe V, Sturm H, Braun U, Ziegmann G, Thermochim. Acta, 616, 49 (2015)
  23. Fernandez-Francos X, Ramis X, Serra A, J. Polym. Sci. A: Polym. Chem., 52(1), 61 (2014)
  24. Song J, Thurber CM, Kobayashi S, Baker AM, Macosko CW, Silvis HC, Polymer, 53(16), 3636 (2012)
  25. Cho KY, Yeom YS, Seo HY, Park YH, Jang HN, Baek KY, Yoon HG, ACS Appl. Mater. Interfaces, 7, 9841 (2015)