화학공학소재연구정보센터
Polymer(Korea), Vol.41, No.6, 992-997, November, 2017
TiO2 나노입자를 이용한 고인장 PVC 필름 제조
High-Strain PVC Film Plasticized by TiO2 Nanoparticles
E-mail:,
초록
Tetrahydrofuran(THF)를 이용하여 제조한 poly(vinyl chloride)(PVC) 필름의 낮은 인장률과 인성이 TiO2 나노입자를 0.8 wt% 미만의 농도로 첨가하였을 때 향상되었다. 제조된 PVC/TiO2 복합재료는 383%의 우수한 인장률과 64.7 J m-3의 인성을 나타냈는데, 이는 PVC 고분자 사슬과 나노입자 사이에서 분자간 인력이 작용하기 때문이다.
The low strain and toughness of tetrahydrofuran (THF)-cast poly(vinyl chloride) (PVC) film were mitigated by introducing TiO2 nanoparticles at loading below 0.8 wt%. The thus obtained PVC/TiO2 composite showed superb elongation at break (383%) and toughness (64.7 J m-3) due to modified molecular interactions between nanoparticles and PVC chains.
  1. Du Y, Gao J, Yang J, Liu X, Polym. -Plast. Technol. Eng., 51, 920 (2012)
  2. Hu JM, Jia X, Li CH, Ma ZY, Zhang GX, Sheng WB, Zhang XL, Wei Z, J. Mater. Sci., 49(7), 2943 (2014)
  3. Li KW, JCIIE, 20, 472 (2003)
  4. Atkinson H, Duffull S, J. Pharm. Pharmacol., 43, 374 (1991)
  5. Fried JR, Polymer science and technology, 2nd edition, Prentice Hall, Vicksburg, 2014.
  6. Soong SY, Cohen RE, Boyce MC, Polymer, 48(5), 1410 (2007)
  7. Loff S, Kabs F, Witt K, Sartoris J, Mandl B, Niessen K, Waag K, J. Pediatr. Surg., 35, 1775 (2000)
  8. Tickner JA, Schettler T, Guidotti T, McCally M, Rossi M, Am. J. Ind. Med., 39, 100 (2001)
  9. Moghbeli MR, Tolue S, J. Appl. Polym. Sci., 113(4), 2590 (2009)
  10. Yin B, Hakkarainen M, J. Mater. Chem., 21, 8670 (2011)
  11. Yao K, Gong J, Tian N, Lin Y, Wen X, Jiang Z, Na H, Tang T, RSC Adv., 5, 31910 (2015)
  12. Hosseini SM, Askari M, Koranian P, Madaeni SS, Moghadassi AR, J. Ind. Eng. Chem., 20(4), 2510 (2014)
  13. Liu J, Yan H, Jiang K, Ceram. Int., 39, 6215 (2013)
  14. Xie XL, Liu QX, Li RKY, Zhou XP, Zhang QX, Yu ZZ, Mai YW, Polymer, 45(19), 6665 (2004)
  15. Horikoshi S, Serpone N, Hisamatsu Y, Hidaka H, Environ. Sci. Technol., 32, 4010 (1998)
  16. Zeng XF, Wang WY, Wang GQ, Chen JF, J. Mater. Sci., 43(10), 3505 (2008)
  17. Harzallah OA, Dupuis D, Rheol. Acta, 42(1-2), 10 (2003)
  18. Calo E, Greco A, Maffezzoli A, Polym. Degrad. Stabil., 96, 784 (2011)
  19. Nakajima N, Sadeghi M, Kyu T, J. Appl. Polym. Sci., 41, 889 (1990)
  20. Wan CY, Qiao XY, Zhang Y, Zhang YX, J. Appl. Polym. Sci., 89(8), 2184 (2003)
  21. Da Silva MA, Vieira MGA, Macumoto ACG, Beppu MM, Polym. Test, 30, 478 (2011)
  22. Hasan M, Lee M, Prog. Nat. Sci., 24, 579 (2014)
  23. Chen JL, Xue G, Li YH, Wang L, Tian GH, Macromolecules, 34(5), 1297 (2001)
  24. Gupta SM, Tripathi M, Chin. Sci. Bull., 56, 1639 (2011)
  25. Lee S, Park H, Paik U, Han TH, J. Solid State Chem., 224, 76 (2015)
  26. Fryer DS, Peters RD, Kim EJ, Tomaszewski JE, de Pablo JJ, Nealey PF, White CC, Wu WL, Macromolecules, 34(16), 5627 (2001)
  27. Mali SS, Betty CA, Bhosale PN, Patil P, ECS J. Solid State Sci. Technol., 1, M15 (2012)
  28. Cho S, Choi W, J. Photochem. Photobiol. A-Chem., 143, 221 (2001)
  29. Matsuzawa S, Maneerat C, Hayata Y, Hirakawa T, Negishi N, Sano T, Appl. Catal. B: Environ., 83(1-2), 39 (2008)
  30. Park H, Choi WY, J. Phys. Chem. B, 108(13), 4086 (2004)
  31. Wu DZ, Wang XD, Song YZ, Jin RG, J. Appl. Polym. Sci., 92(4), 2714 (2004)
  32. Zuiderduin WCJ, Westzaan C, Huetink J, Gaymans RJ, Polymer, 44(1), 261 (2003)
  33. Thio YS, Argon AS, Cohen RE, Weinberg M, Polymer, 43(13), 3661 (2002)
  34. Wang Z, Liu J, Wu S, Wang W, Zhang L, Phys. Chem. Chem. Phys., 12, 3014 (2010)
  35. Barrau S, Demont P, Maraval C, Bernes A, Lacabanne C, Macromol. Rapid Commun., 26(5), 390 (2005)