화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.29, No.4, 241-247, November, 2017
Improved diffusing wave spectroscopy based on the automatized determination of the optical transport and absorption mean free path
E-mail:,
Diffusing wave spectroscopy (DWS) can be employed as an optical rheology tool with numerous applications for studying the structure, dynamics and linear viscoelastic properties of complex fluids, foams, glasses and gels. To carry out DWS measurements, one first needs to quantify the static optical properties of the sample under investigation, i.e. the transport mean free path l* and the absorption length la. In the absence of absorption this can be done by comparing the diffuse optical transmission to a calibration sample whose l* is known. Performing this comparison however is cumbersome, time consuming, and prone to mistakes by the operator. Moreover, already weak absorption can lead to significant errors. In this paper, we demonstrate the implementation of an automatized approach, based on which the DWS measurement procedure can be simplified significantly. By comparison with a comprehensive set of calibration measurements we cover the entire parameter space relating measured count rates (CRt , CRb) to (l*, la). Based on this approach we can determine l* and la of an unknown sample accurately thus making the additional measurement of a calibration sample obsolete. We illustrate the use of this approach by monitoring the coarsening of a commercially available shaving foam with DWS.
  1. Cohen-Addad S, Hohler R, Phys. Rev. Lett., 86, 4700 (2001)
  2. Durian DJ, Weitz DA, Pine DJ, Science, 252, 686 (1991)
  3. Durian DJ, Weitz DA, Pine DJ, Phys. Rev. B, 44, R7902 (1991)
  4. Furst EM, Squires TM, Microrheology, Oxford University Press, Oxford 2017.
  5. Kaplan PD, Kao MH, Yodh AG, Pine DJ, Appl. Optics, 32, 3828 (1993)
  6. Lee JY, Hwang JW, Jung HW, Kim SH, Lee SJ, Yoon K, Weitz DA, Langmuir, 29(3), 861 (2013)
  7. Li J, Dietsche G, Iftime D, Skipetrov SE, Maret G, Elbert T, Rockstroh B, Gisler T, J. Biomed. Opt., 10, 044002 (2005)
  8. Maret G, Wolf PE, Phys. B-Condens. Mat., 65, 409 (1987)
  9. Mason TG, Weitz DA, Phys. Rev. Lett., 74, 1250 (1995)
  10. Ochoa LFR, Ph.D Thesis, Universite de Fribourg 2004.
  11. Palmer A, Mason TG, Xu J, Kuo SC, Wirtz D, Biophys. J., 76, 1063 (1999)
  12. Pierrat R, Ambichl P, Gigan S, Haber A, Carminati R, Rotter S, Proceedings of the National Academy of Sciences, 111, 17765 (2014)
  13. Pine DJ, Weitz DA, Zhu JX, Herbolzheimer E, J. Phys. France, 51, 2101 (1990)
  14. Pine DJ, Weitz DA, Chaikin PM, Herbolzheimer E, Phys. Rev. Lett., 60, 1134 (1998)
  15. Scheffold F, J. Dispersion Sci. Technol., 23, 591 (2002)
  16. Scheffold F, Diaz-Leyva P, Reufer M, Braham NB, Lynch I, Harden JL, Phys. Rev. Lett., 104, 128304 (2010)
  17. Scheffold F, Schurtenberger P, Soft Mater, 1, 139 (2003)
  18. Sessoms DA, Bissig H, Duri A, Cipelletti L, Trappe V, Soft Matter, 6, 3030 (2010)
  19. Waigh TA, Rep. Prog. Phys., 79, 074601 (2016)
  20. Weitz DA, Pine DJ, Oxford University Press, New York, 652-720 1993.
  21. Zhu JX, Durian DJ, Muller J, Weitz DA, Pine DJ, Phys. Rev. Lett., 68, 2559 (1992)