화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.56, 185-195, December, 2017
Development of an efficient process for recovery of fucose in a multi-component mixture of monosugars stemming from defatted microalgal biomass
E-mail:
One of highly promising ways for fucose production is to utilize the defatted residue of microalgae as the fucose source. A prerequisite for such fucose-production strategy is a robust separation process that can perform an efficient recovery of fucose in a monosugar mixture coming from the hydrolysis of the defatted microalgal biomass. To develop such process, we first selected a prospective large-scale adsorbent that had a sufficiently high selectivity between fucose and other monosugar components. The selected adsorbent was then experimented in accordance with the principle of multiple frontal analysis in order to obtain the intrinsic parameters of the relevant monosugar components. Using the resultant parameters, the optimal design of the fucose-separation process of interest was carried out on the basis of a simulated moving bed (SMB) technology. The validity of the designed process was investigated first with detailed model simulation, and then with a continuous fucose-separation experiment based on the self-assembled SMB equipment. The results of the SMB experiment demonstrated that the developed process was highly effective in continuous separation of fucose with the purity of 97.1% while maintaining its loss as low as 0%. It is thus expected that the results in this study can contribute to a meaningful improvement in the economical efficiencies of both a microalgae based biodiesel-production process and a fucose-production process.
  1. Hasegawa S, Baba T, Hori Y, J. Invest. Dermatol., 75, 284 (1980)
  2. Wetzel W, Popov N, Lossner B, Schulzeck S, Honza R, Matthies H, Pharmacol. Biochem. Behav., 13, 765 (1980)
  3. Matthies H, Schroeder H, Smalla KH, Krug M, Learn. Mem., 7, 227 (2000)
  4. Fodil-Bourahla I, Bizbiz L, Schoevaert D, Robert AM, Robert L, Biomed. Pharmacother., 57, 209 (2003)
  5. Robert C, Robert AM, Robert L, Pathol. Biol., 51, 586 (2003)
  6. Peterszegi G, Isnard N, Robert AM, Robert L, Biomed. Pharmacother., 57, 187 (2003)
  7. Robert C, Robert AM, Robert L, Skin Res. Technol., 11, 47 (2005)
  8. Saari P, Hakka K, Heikkila H, Jumppanen J, Hurme M, J. Liq. Chromatogr. Relat. Technol., 32, 2050 (2009)
  9. Gori A, Biagiolini S, Manoni M, Vagnoli L, Salsini L, Chini J, Giacomelli S, Cipolletti G, Process for production of L-fucose. EP Patent 2616547 (2011).
  10. Baumgartner F, Seitz L, Sprenger GA, Albermann C, Microb. Cell Fact., 12, 40 (2013)
  11. Kristen H, Vogel C, Wrubel F, Mahrwald RM, Schick H, J. Carbonydr. Chem., 7, 277 (1988)
  12. Gesson JP, Jacquesy JC, Mondon M, Petit P, Tetrahedron Lett., 33, 3637 (1992)
  13. Sarbanja S, Das SK, Roy N, Carbohydr. Res., 270, 93 (1995)
  14. Vanhooren PT, Vandamme EJ, J. Chem. Technol. Biotechnol., 74(6), 479 (1999)
  15. Wong C, Enzymatic synthesis of L-fucose and analogs, US Patent 6713287 (1995).
  16. Park J, Hong SK, Chang YK, Bioresour. Technol., 191, 414 (2015)
  17. Azevedo DCS, Rodrigues AE, Chem. Eng. J., 82(1-3), 95 (2001)
  18. Azevedo DCS, Rodrigues AE, AIChE J., 47(9), 2042 (2001)
  19. Azevedo DCS, Rodrigues AE, Sep. Sci. Technol., 40(9), 1761 (2005)
  20. Rabelo MC, Pereira CSM, Rodrigues S, Rodrigues AE, Azevedo DCS, Adsorpt. Sci. Technol., 30, 773 (2012)
  21. Wisniewski L, Pereira CSM, Polakovic M, Rodrigues AE, Adsorption, 20, 483 (2014)
  22. Pais LS, Loureiro JM, Rodrigues AE, AIChE J., 44(3), 561 (1998)
  23. Minceva M, Gomes PS, Meshko V, Rodrigues AE, Chem. Eng. J., 140(1-3), 305 (2008)
  24. O’Brien AG, Horvath Z, Levesque F, Lee JW, Seidel-Morgenstern A, Seeberger PH, Angew. Chem.-Int. Edit., 51, 7028 (2012)
  25. Wu DJ, Xie Y, Ma Z, Wang NHL, Ind. Eng. Chem. Res., 37(10), 4023 (1998)
  26. Lee KB, Chin CY, Xie Y, Cox GB, Wang NHL, Ind. Eng. Chem. Res., 44(9), 3249 (2005)
  27. Ma Z, Wang NH, AIChE J., 43(10), 2488 (1997)
  28. Xie Y, Hritzko B, Chin CY, Wang NHL, Ind. Eng. Chem. Res., 42(17), 4055 (2003)
  29. Hur JS, Wankat PC, Ind. Eng. Chem. Res., 45(4), 1426 (2006)
  30. Mun S, J. Chromatogr. A, 1230, 100 (2012)
  31. Park C, Nam HG, Jo SH, Wang NHL, Mun S, J. Chromatogr. A, 1435, 39 (2016)
  32. Lee KB, Kasat RB, Cox GB, Wang NHL, AIChE J., 54(11), 2852 (2008)
  33. Kasat RB, Gupta SK, Comput. Chem. Eng., 27(12), 1785 (2003)
  34. Vente JA, Bosch H, De Haan AB, Bussmann PJT, J. Chromatogr. A, 1006, 72 (2005)
  35. Chung SF, Wen CY, AIChE J., 14, 857 (1968)
  36. Wilson EJ, Geankoplis CJ, Ind. Eng. Chem. Fundam., 5, 9 (1966)
  37. Wilke CR, Chang PIN, AIChE J., 1, 264 (1955)
  38. Mackie JS, Meares P, Proc. R. Soc. Lond. Ser. A, 232, 498 (1955)
  39. Keßler LC, Seidel-Morgenstern A, J. Chromatogr. A, 1207, 55 (2008)
  40. Storti G, Mazzotti M, Carra S, Morbidelli M, Chem. Eng. Sci., 44, 1329 (1989)