Process Biochemistry, Vol.59, 58-64, 2017
Enzymatic recovery of polyester building blocks from polymer blends
In this study we investigated the ability of a cutinase from Thermobifida cellulosilytica (Thc_Cut1) to hydrolyze poly (ethylene terephthalate) (PET) moieties in different polymer blends. The composition of various materials including commercial available bottles and packaging was determined using Fourier Transform InfraRed spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC). When incubated with PET blended with polyethylene (PE) or polyamide (PA) from packaging and bottles without prior separation, Thc_Cut1 selectively hydrolyzed the PET moieties releasing terephthalic acid (TPA) and mono(2-hydroxyethyl) terephthalate (MHET). Polymer blends were hydrolyzed in an up to 9 times higher extent compared to higher crystalline pure PET. The influence of various parameters like temperature, particle size, crystallinity and product inhibition on hydrolysis of PET moieties by Thc_Cut1 was investigated. The amount of products released was up to 10 times higher when the incubation temperature was increased from 40 degrees C to 60 degrees C. The smaller the particle size the higher the hydrolysis rates were. Interestingly, semi-crystalline (24%) PET from bottles was hydrolyzed faster than powder from amorphous PET films (12%). An inhibitory effect of bis(2-hydroxyethyl) terephthalate (BHET) on hydrolysis of PET by Thc_Cutl was observed. (C) 2017 Elsevier Ltd. All rights reserved.
Keywords:Enzymatic polymer recycling;Cutinase;Poly (ethylene terephthalate);Thermobifida cellulosilytica;Polymer blends