Macromolecules, Vol.50, No.18, 7388-7398, 2017
Structure and Dynamics of Ionic Block Copolymer Melts: Computational Study
Structure and dynamics of melts of copolymers with an ABCBA topology, where C is an ionizable block, have been studied by fully atomistic molecular dynamics (MD) simulations. Introducing an ionizable block for functionality adds a significant element to the coupled set of interactions that determine the structure and dynamics of the macromolecule. The polymer consists of a randomly sulfonated polystyrene C block tethered to a flexible poly(ethylene-r-propylene) bridge B and end-capped with poly(tert-butylstyrene) A. The chemical structure and topology of these polymers constitute a model for incorporation of ionic blocks within a framework that provides tactility and mechanical stability. Here we resolve the structure and dynamics of a structured polymer on the nanoscale constrained by ionic clusters. We find that the melts form intertwined networks of the A and C blocks independent of the degree of sulfonation of the C block with no long-range order. The cluster cohesiveness and morphology affect both macroscopic translational motion and segmental dynamics of all the blocks.