화학공학소재연구정보센터
Macromolecules, Vol.50, No.19, 7760-7769, 2017
Topology Effects on the Structural and Physicochemical Properties of Polymer Brushes
The application of polymer "brushes", with their unique physicochemical properties, has led to a radical change in the way we functionalize biomaterials or formulate hybrids; however, their attractive traits can be largely surpassed by applying different polymer topologies, beyond the simple linear chain. Cyclic and loop brushes provide enhanced steric stabilization, improved biopassivity, and lubrication compared to their linear analogues. Focusing on poly(2-ethyl-2-oxazo-line) (PEOXA), an emerging polymer in nanobiotechnology, we systematically investigate how topology effects determine the structure of PEOXA brushes and to what extent technologically relevant properties such as protein resistance, nanomechanics, and nanotribology can be tuned by varying brush topology. The highly compact structure of cyclic PEOXA brushes confers an augmented entropic barrier to the surface, efficiently hindering unspecific interactions with biomolecules. Moreover, the intrinsic absence of chain ends at the cyclic-brush interface prevents interdigitation when two identical polymer layers are sheared against each other, dramatically reducing friction. Loop PEOXA brushes present structural and interfacial characteristics that are intermediate between those of linear and cyclic brushes, which can be precisely tuned by varying the relative concentration of loops and tails within the assembly. Such topological control allows biopassivity to be progressively increased and friction to be tuned.