Journal of the American Chemical Society, Vol.139, No.30, 10347-10358, 2017
Combined Theoretical and Experimental Studies of Nickel-Catalyzed Cross-Coupling of Methoxyarenes with Arylboronic Esters via C-O Bond Cleavage
Nickel(0)-catalyzed cross-coupling of methoxyarenes through C-O bond activation has been the subject of considerable research because of their favorable features compared with those of the cross-coupling of aryl halides, such as atom economy and efficiency. In 2008, we have reported nickel/PCy3-catalyzed cross-coupling of methoxyarenes with arylboronic esters in which the addition of a stoichiometric base such as CsF is essential for the reaction to proceed. Recently, we have also found that the scope of the substrate in the Suzuki Miyaura-type cross-coupling of methoxyarenes can be greatly expanded by using 1,3-dicyclohexylimidazol-2-ylidene (ICy) as the ligand. Interestingly, a stoichiometric amount of external base is not, required for the nickel/ICy-catalyzed cross-coupling. For the mechanism and origin elucidated, density functional theory calculations are conducted. In the nickel/PCy3-catalyzed reactions, the activation energy for the oxidative addition of the Caryl)-OMe bond is too high to occur under the catalytic conditions. However, the oxidative addition process becomes energetically feasible when CsF and an arylboronic ester interact with a Ni(PCy3)(2)/methoxyarene fragment to form a quaternary complex. In the nickel/ICy-catalyzed reactions, the oxidative addition of the Caryl)-OMe bond can proceed more easily without the aid of CsF because the nickel-ligand bonds are stronger and therefore stabilize the transition state. The subsequent transmetalation from an Ar-Ni-OMe intermediate is determined to proceed through a pathway with lower energies than those required for beta-hydrogen elimination. The overall driving force of the reaction is the reductive elimination to form the carbon carbon bond.