Journal of the American Chemical Society, Vol.139, No.32, 10992-10995, 2017
Continuous O-2-Evolving MnFe2O4 Nanoparticle-Anchored Mesoporous Silica Nanoparticles for Efficient Photodynamic Therapy in Hypoxic Cancer
Therapeutic effects of photodynamic therapy (PDT) are limited by cancer hypoxia because the PDT process is dependent on O-2 concentration. Herein, we design biocompatible manganese ferrite nanoparticle-anchored mesoporous silica nanoparticles (MFMSNs) to overcome hypoxia, consequently enhancing the therapeutic efficiency of PDT. By exploiting the continuous O-2-evolving property of MnFe2O4 nanoparticles through the Fenton reaction, MFMSNs relieve hypoxic condition using a small amount of nanoparticles and improve therapeutic outcomes of PDT for tumors in vivo. In addition, MFMSNs exhibit T-2 contrast effect in magnetic resonance imaging (MRI), allowing in vivo tracking of MFMSNs. These findings demonstrate great potential of MFMSNs for theranostic agents in cancer therapy.