화학공학소재연구정보센터
Journal of Power Sources, Vol.362, 73-79, 2017
A novel analytical solution for gas diffusion in multi-scale fuel cell porous media
Gas diffusion in multi-scale fuel cell porous media such as gas diffusion layer, microporous layer and catalyst layer affects the power performance of proton exchange membrane fuel cells. The effective gas diffusivity is one of the key parameters for gas diffusion in multi-scale fuel cell porous media, which has attracted broad interests from science and engineering. A new analytical model is presented and solved for gas diffusion in fuel cell porous media based on fractal geometry. Due to its multi-scale characteristics and existence of microscale and nanoscale pores in most fuel cell porous media, both molecular and Knudsen diffusion mechanisms are taken into account. An expression for the effective gas diffusivity of multi-scale porous media is derived, expressed in terms of bulk diffusion, pore structure as well as the Knudsen number. The proposed fractal model is validated by comparison with available experimental data and empirical correlations. The model shows that the effective gas diffusivity increases with increase of porosity and pore fractal dimension, while it decreases with increased tortuosity fractal dimension. It is believed that the current work may shed light on the gas diffusion mechanism in fuel cell porous media. (C) 2017 Elsevier B.V. All rights reserved.