Journal of Physical Chemistry A, Vol.121, No.35, 6580-6602, 2017
Ab lnitio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species
The fidelity of combustion simulations is strongly dependent on the accuracy of the underlying thermochemical properties for the core combustion species that arise as intermediates and products in the chemical conversion of most fuels. High level theoretical evaluations are coupled with a wide-ranging implementation of the Active Thermochemical Tables (ATcT) approach to obtain well-validated high fidelity predictions for the 0 K heat of formation for a large set of core combustion species. In particular, high level ab initio electronic structure based predictions are obtained for a set of 348 C, N, O, and H containing species, which corresponds to essentially all core combustion species with 34 or fewer electrons. The theoretical analyses incorporate various high level corrections to base CCSD(T)/cc-pVnZ analyses (n = T or Q) using H-2, CH4, H2O, and NH3 as references. Corrections for the complete-basis-set limit, higher-order excitations, anharmonic zero-point energy, corevalence, relativistic, and diagonal BornOppenheimer effects are ordered in decreasing importance. Independent ATcT values are presented for a subset of 150 species. The accuracy of the theoretical predictions is explored through (i) examination of the magnitude of the various corrections, (ii) comparisons with other high level calculations, and (iii) through comparison with the ATcT values. The estimated 2 sigma uncertainties of the three methods devised here, ANL0, ANL0-F12, and ANL1, are in the range of +/- 1.01.5 kJ/mol for single-reference and moderately multireference species, for which the calculated higher order excitations are 5 kJ/mol or less. In addition to providing valuable references for combustion simulations, the subsequent inclusion of the current theoretical results into the ATcT thermochemical network is expected to significantly improve the thermochemical knowledge base for less-well studied species.