화학공학소재연구정보센터
Journal of Materials Science, Vol.52, No.22, 12960-12980, 2017
Poly(epsilon-caprolactone)-based membranes with tunable physicochemical, bioactive and osteoinductive properties
In contrast to currently used materials, membranes for the treatment of bone defects should actively promote regeneration of bone tissue beyond their physical barrier function. What is more, both material properties and biological features of membranes should be easily adaptable to meet the needs of particular therapeutic applications. Therefore, the role of preparation methods (non-solvent-induced phase separation and thermal-induced phase separation) of poly(epsilon-caprolactone)-based membranes and their modification with gel-derived bioactive glass (BG) particles of two different sizes (< 45 and < 3 mu m) in modulating material morphology, polymer matrix crystallinity, surface wettability, kinetics of in vitro bioactivity and also osteoblast response was investigated. Both surfaces of membranes were characterised in terms of their properties. Our results indicated a possibility to modulate microstructure (pore size ranging from submicron to hundreds of micrometres), wettability (from hydrophobic to fully wettable surface) and polymer crystallinity (from 19 to 60%) in a wide range by the use of various preparation methods and different BG particle sizes. Obtained composite membranes showed excellent in vitro hydroxyapatite forming ability after incubation in simulated body fluid. Here we demonstrated that bioactive layer formation on the surface of membranes occurred through ACP-OCP-CDHA-HCA transformation, that mimic in vivo bone biomineralization process. Composite membranes supported human osteoblast proliferation, stimulated cell differentiation and matrix mineralization. We proved that kinetics of bioactivity process and also osteoinductive properties of membranes can be easily modulated with the use of proposed variables. This brings new opportunities to obtain multifunctional membranes for bone regeneration with tunable physicochemical and biological properties.