화학공학소재연구정보센터
Journal of Crystal Growth, Vol.474, 76-80, 2017
Hotzone design and optimization for 2-in. AlN PVT growth process through global heat transfer modeling and simulations
A tungsten based reactor to grow 2-in. PVT AlN crystals by induction heating was designed. In order to investigate the effect of the hotzone structure layout on the temperature distribution in the growth chamber, a series of global quasi-steady numerical simulations with and without gas convection was performed using the FEMAG software. Simulation results show that the temperature gradient between the AlN powder sources and the deposition interface is influenced profoundly by the size of the induction heater and the crucible thickness. Also the tungsten heat shields have obvious effects on the global temperature distribution and heater power consumption during the growth process. However, the number of tungsten shield layers plays a trivial role on the temperature gradient between the ALN powder sources and the crucible top. Global heat transfer simulations show that the designed hotzone can provide an optimized and flexible environment for 2-in. AlN PVT growth.