International Journal of Hydrogen Energy, Vol.42, No.32, 20430-20443, 2017
Maximum power point tracking of a proton exchange membrane fuel cell system using PSO-PID controller
Fuel cells output power depends on the operating conditions, including cell temperature, oxygen partial pressure, hydrogen partial pressure, and membrane water content. In each particular condition, there is only one unique operating point for a fuel cell system with the maximum output. Thus, a maximum power point tracking (MPPT) controller is needed to increase the efficiency of the fuel cell systems. In this paper an efficient method based on the particle swarm optimization (PSO) and PID controller (PSO-PID) is proposed for MPPT of the proton exchange membrane (PEM) fuel cells. The closed loop system includes the PEM fuel cell, boost converter, battery and PSO-PID controller. PSO-PID controller adjusts the operating point of the PEM fuel cell to the maximum power by tuning of the boost converter duty cycle. To demonstrate the performance of the proposed algorithm, simulation results are compared with perturb and observe (P&O) and sliding mode (SM) algorithms under different operating conditions. PSO algorithm with fast convergence, high accuracy and very low power fluctuations tracks the maximum power point of the fuel cell system. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.