화학공학소재연구정보센터
Inorganic Chemistry, Vol.56, No.17, 10785-10793, 2017
N-Heterocyclic Carbene-Phosphinidene and Carbene-Phosphinidenide Transition Metal Complexes
Half-sandwich complexes of the N-heterocyclic carbene-phosphinidene adduct [(IPr)PH] (1, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) were prepared by its reaction with dimeric complexes of the type [LMCl2](2), which afforded the three-legged piano-stool complexes [LMCl2{HP(IPr)}] (9a/9b: M = Ru/Os, L = eta(6)-p-cymene; 10a/10b: M = Rh/Ir, L = eta(5)-C5Me5). Their conversion into the corresponding carbene-phosphinidenide complexes [LMCl{P(IPr)}] (11a/11b: M = Ru/Os; 12a/12b: M = Rh/Ir) with a two-legged piano stool geometry was studied by NMR spectroscopy in the presence of the strong base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). Alternatively, the complexes 11 and 12 were isolated in high yields from the reactions of the carbene-phosphinidene adduct [(IPr)PTMS] (2) with [LMCl2](2), whereby formation of the metal-phosphorus bonds was accompanied by elimination of trimethylsilyl chloride (Me3SiCl). Theoretical calculations reveal a strong polarization of the phosphorus ligands upon metal complexation, which can be ascribed to the ability of the imidazole moiety to effectively stabilize a positive charge. Dehydrohalogenation of complexes 9/10 to 11/12 affords a significant increase of the metal-phosphorus bond order, with the carbene-phosphinidenide ligand acting as a strong 2s,2p-electron donor.