화학공학소재연구정보센터
Industrial & Engineering Chemistry Research, Vol.56, No.36, 9964-9979, 2017
Multiscale and Multiphase Model of Fixed Bed Reactors for Fischer-Tropsch Synthesis: Intensification Possibilities Study
A multiphase fixed-bed reactor (FBR) model for Fischer Tropsch Synthesis has been developed. A high level of details is considered for description of the phenomena on the reactor and particle scale. Detailed kinetics is used, with parameters estimated from experiments with a cobalt-based catalyst. Model robustness has been validated using literature data. Performance analysis was made for a conventional scale FBR with egg-shell distribution of catalyst and a millimeter-scale FBR with small particles and uniform distribution. In both cases, diffusion limitations are almost eliminated due to use of small diffusion lengths. For similar qualitative results, a milli-scaled design would result in a significantly lower reactor volume, but the capital costs could be high due to large wall area and a vast number of tubes. Heat removal is efficient in both cases, and pressure drop in the milli-scale reactor is low due to the use of a shorter bed and lower velocity.